/* * Copyright (c) 2018 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #define CYC_PER_TICK ((uint32_t)((uint64_t) (sys_clock_hw_cycles_per_sec() \ >> CONFIG_RISCV_MACHINE_TIMER_SYSTEM_CLOCK_DIVIDER) \ / (uint64_t)CONFIG_SYS_CLOCK_TICKS_PER_SEC)) #define MAX_CYC INT_MAX #define MAX_TICKS ((MAX_CYC - CYC_PER_TICK) / CYC_PER_TICK) #define MIN_DELAY CONFIG_RISCV_MACHINE_TIMER_MIN_DELAY #define TICKLESS IS_ENABLED(CONFIG_TICKLESS_KERNEL) static struct k_spinlock lock; static uint64_t last_count; #if defined(CONFIG_TEST) const int32_t z_sys_timer_irq_for_test = RISCV_MACHINE_TIMER_IRQ; #endif static uint64_t get_hart_mtimecmp(void) { return RISCV_MTIMECMP_BASE + (_current_cpu->id * 8); } static void set_mtimecmp(uint64_t time) { #ifdef CONFIG_64BIT *(volatile uint64_t *)get_hart_mtimecmp() = time; #else volatile uint32_t *r = (uint32_t *)(uint32_t)get_hart_mtimecmp(); /* Per spec, the RISC-V MTIME/MTIMECMP registers are 64 bit, * but are NOT internally latched for multiword transfers. So * we have to be careful about sequencing to avoid triggering * spurious interrupts: always set the high word to a max * value first. */ r[1] = 0xffffffff; r[0] = (uint32_t)time; r[1] = (uint32_t)(time >> 32); #endif } static uint64_t mtime(void) { #ifdef CONFIG_64BIT return *(volatile uint64_t *)RISCV_MTIME_BASE; #else volatile uint32_t *r = (uint32_t *)RISCV_MTIME_BASE; uint32_t lo, hi; /* Likewise, must guard against rollover when reading */ do { hi = r[1]; lo = r[0]; } while (r[1] != hi); return (((uint64_t)hi) << 32) | lo; #endif } static void timer_isr(const void *arg) { ARG_UNUSED(arg); k_spinlock_key_t key = k_spin_lock(&lock); uint64_t now = mtime(); uint32_t dticks = (uint32_t)((now - last_count) / CYC_PER_TICK); last_count = now; if (!TICKLESS) { uint64_t next = last_count + CYC_PER_TICK; if ((int64_t)(next - now) < MIN_DELAY) { next += CYC_PER_TICK; } set_mtimecmp(next); } k_spin_unlock(&lock, key); sys_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ? dticks : 1); } void sys_clock_set_timeout(int32_t ticks, bool idle) { ARG_UNUSED(idle); #if defined(CONFIG_TICKLESS_KERNEL) /* RISCV has no idle handler yet, so if we try to spin on the * logic below to reset the comparator, we'll always bump it * forward to the "next tick" due to MIN_DELAY handling and * the interrupt will never fire! Just rely on the fact that * the OS gave us the proper timeout already. */ if (idle) { return; } ticks = ticks == K_TICKS_FOREVER ? MAX_TICKS : ticks; ticks = CLAMP(ticks - 1, 0, (int32_t)MAX_TICKS); k_spinlock_key_t key = k_spin_lock(&lock); uint64_t now = mtime(); uint32_t adj, cyc = ticks * CYC_PER_TICK; /* Round up to next tick boundary. */ adj = (uint32_t)(now - last_count) + (CYC_PER_TICK - 1); if (cyc <= MAX_CYC - adj) { cyc += adj; } else { cyc = MAX_CYC; } cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK; if ((int32_t)(cyc + last_count - now) < MIN_DELAY) { cyc += CYC_PER_TICK; } set_mtimecmp(cyc + last_count); k_spin_unlock(&lock, key); #endif } uint32_t sys_clock_elapsed(void) { if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { return 0; } k_spinlock_key_t key = k_spin_lock(&lock); uint32_t ret = ((uint32_t)mtime() - (uint32_t)last_count) / CYC_PER_TICK; k_spin_unlock(&lock, key); return ret; } uint32_t sys_clock_cycle_get_32(void) { return (uint32_t)(mtime() << CONFIG_RISCV_MACHINE_TIMER_SYSTEM_CLOCK_DIVIDER); } uint64_t sys_clock_cycle_get_64(void) { return (mtime() << CONFIG_RISCV_MACHINE_TIMER_SYSTEM_CLOCK_DIVIDER); } static int sys_clock_driver_init(const struct device *dev) { ARG_UNUSED(dev); IRQ_CONNECT(RISCV_MACHINE_TIMER_IRQ, 0, timer_isr, NULL, 0); last_count = mtime(); set_mtimecmp(last_count + CYC_PER_TICK); irq_enable(RISCV_MACHINE_TIMER_IRQ); return 0; } #ifdef CONFIG_SMP void smp_timer_init(void) { set_mtimecmp(last_count + CYC_PER_TICK); irq_enable(RISCV_MACHINE_TIMER_IRQ); } #endif SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);