/* * Copyright (c) 2016, Freescale Semiconductor, Inc. * Copyright (c) 2017, NXP * Copyright (c) 2021, ATL Electronics. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT cypress_psoc6_spi #define LOG_LEVEL CONFIG_SPI_LOG_LEVEL #include LOG_MODULE_REGISTER(spi_psoc6); #include #include #include #include "spi_context.h" #include "cy_syslib.h" #include "cy_sysclk.h" #include "cy_scb_spi.h" #include "cy_sysint.h" #define SPI_CHIP_SELECT_COUNT 4 #define SPI_MAX_DATA_WIDTH 16 #define SPI_PSOC6_CLK_DIV_NUMBER 1 struct spi_psoc6_config { CySCB_Type *base; uint32_t periph_id; void (*irq_config_func)(const struct device *dev); uint32_t num_pins; struct soc_gpio_pin pins[]; }; struct spi_psoc6_transfer { uint8_t *txData; uint8_t *rxData; size_t dataSize; }; struct spi_psoc6_data { struct spi_context ctx; struct cy_stc_scb_spi_config cfg; struct spi_psoc6_transfer xfer; }; static void spi_psoc6_transfer_next_packet(const struct device *dev) { const struct spi_psoc6_config *config = dev->config; struct spi_psoc6_data *data = dev->data; struct spi_context *ctx = &data->ctx; struct spi_psoc6_transfer *xfer = &data->xfer; uint32_t count; LOG_DBG("TX L: %d, RX L: %d", ctx->tx_len, ctx->rx_len); if ((ctx->tx_len == 0U) && (ctx->rx_len == 0U)) { /* nothing left to rx or tx, we're done! */ xfer->dataSize = 0U; spi_context_cs_control(ctx, false); spi_context_complete(ctx, 0U); return; } if (ctx->tx_len == 0U) { /* rx only, nothing to tx */ xfer->txData = NULL; xfer->rxData = ctx->rx_buf; xfer->dataSize = ctx->rx_len; } else if (ctx->rx_len == 0U) { /* tx only, nothing to rx */ xfer->txData = (uint8_t *) ctx->tx_buf; xfer->rxData = NULL; xfer->dataSize = ctx->tx_len; } else if (ctx->tx_len == ctx->rx_len) { /* rx and tx are the same length */ xfer->txData = (uint8_t *) ctx->tx_buf; xfer->rxData = ctx->rx_buf; xfer->dataSize = ctx->tx_len; } else if (ctx->tx_len > ctx->rx_len) { /* Break up the tx into multiple transfers so we don't have to * rx into a longer intermediate buffer. Leave chip select * active between transfers. */ xfer->txData = (uint8_t *) ctx->tx_buf; xfer->rxData = ctx->rx_buf; xfer->dataSize = ctx->rx_len; } else { /* Break up the rx into multiple transfers so we don't have to * tx from a longer intermediate buffer. Leave chip select * active between transfers. */ xfer->txData = (uint8_t *) ctx->tx_buf; xfer->rxData = ctx->rx_buf; xfer->dataSize = ctx->tx_len; } if (xfer->txData != NULL) { if (Cy_SCB_SPI_WriteArray(config->base, xfer->txData, xfer->dataSize) != xfer->dataSize) { goto err; } } else { /* Need fill TX fifo with garbage to perform read. * This keeps logic simple and saves stack. * Use 0 as dummy data. */ for (count = 0U; count < xfer->dataSize; count++) { if (Cy_SCB_SPI_Write(config->base, 0U) == 0U) { goto err; } } } LOG_DBG("TRX L: %d", xfer->dataSize); return; err: /* no FIFO available to run the transfer */ xfer->dataSize = 0U; spi_context_cs_control(ctx, false); spi_context_complete(ctx, -ENOMEM); } static void spi_psoc6_isr(const struct device *dev) { const struct spi_psoc6_config *config = dev->config; struct spi_psoc6_data *data = dev->data; Cy_SCB_ClearMasterInterrupt(config->base, CY_SCB_MASTER_INTR_SPI_DONE); /* extract data from RX FIFO */ if (data->xfer.rxData != NULL) { Cy_SCB_SPI_ReadArray(config->base, data->xfer.rxData, data->xfer.dataSize); } else { Cy_SCB_ClearRxFifo(config->base); } /* Set next data block */ spi_context_update_tx(&data->ctx, 1, data->xfer.dataSize); spi_context_update_rx(&data->ctx, 1, data->xfer.dataSize); /* Start next block * Since 1 byte at TX FIFO will start transfer data, let's try * minimize ISR recursion disabling all interrupt sources when add * data on TX FIFO */ Cy_SCB_SetMasterInterruptMask(config->base, 0U); spi_psoc6_transfer_next_packet(dev); if (data->xfer.dataSize > 0U) { Cy_SCB_SetMasterInterruptMask(config->base, CY_SCB_MASTER_INTR_SPI_DONE); } } static uint32_t spi_psoc6_get_freqdiv(uint32_t frequency) { uint32_t oversample; uint32_t bus_freq = 100000000UL; /* * TODO: Get PerBusSpeed when clocks are available to PSoC-6. * Currently the bus freq is fixed to 50Mhz and max SPI clk can be * 12.5MHz. */ for (oversample = 4; oversample < 16; oversample++) { if ((bus_freq / oversample) <= frequency) { break; } } /* Oversample [4, 16] */ return oversample; } static void spi_psoc6_master_get_defaults(struct cy_stc_scb_spi_config *cfg) { cfg->spiMode = CY_SCB_SPI_MASTER; cfg->subMode = CY_SCB_SPI_MOTOROLA; cfg->sclkMode = 0U; cfg->oversample = 0U; cfg->rxDataWidth = 0U; cfg->txDataWidth = 0U; cfg->enableMsbFirst = false; cfg->enableFreeRunSclk = false; cfg->enableInputFilter = false; cfg->enableMisoLateSample = false; cfg->enableTransferSeperation = false; cfg->ssPolarity = 0U; cfg->enableWakeFromSleep = false; cfg->rxFifoTriggerLevel = 0U; cfg->rxFifoIntEnableMask = 0U; cfg->txFifoTriggerLevel = 0U; cfg->txFifoIntEnableMask = 0U; cfg->masterSlaveIntEnableMask = 0U; } static int spi_psoc6_configure(const struct device *dev, const struct spi_config *spi_cfg) { struct spi_psoc6_data *data = dev->data; uint32_t word_size; if (spi_context_configured(&data->ctx, spi_cfg)) { /* This configuration is already in use */ return 0; } if (spi_cfg->operation & SPI_HALF_DUPLEX) { LOG_ERR("Half-duplex not supported"); return -ENOTSUP; } word_size = SPI_WORD_SIZE_GET(spi_cfg->operation); if (word_size > SPI_MAX_DATA_WIDTH) { LOG_ERR("Word size %d is greater than %d", word_size, SPI_MAX_DATA_WIDTH); return -EINVAL; } if (SPI_OP_MODE_GET(spi_cfg->operation) == SPI_OP_MODE_MASTER) { spi_psoc6_master_get_defaults(&data->cfg); if (spi_cfg->slave > SPI_CHIP_SELECT_COUNT) { LOG_ERR("Slave %d is greater than %d", spi_cfg->slave, SPI_CHIP_SELECT_COUNT); return -EINVAL; } data->cfg.rxDataWidth = data->cfg.txDataWidth = word_size; if (SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA) { if (SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL) { data->cfg.sclkMode = CY_SCB_SPI_CPHA1_CPOL1; } else { data->cfg.sclkMode = CY_SCB_SPI_CPHA1_CPOL0; } } else { if (SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL) { data->cfg.sclkMode = CY_SCB_SPI_CPHA0_CPOL1; } else { data->cfg.sclkMode = CY_SCB_SPI_CPHA0_CPOL0; } } data->cfg.enableMsbFirst = !!!(spi_cfg->operation & SPI_TRANSFER_LSB); data->cfg.oversample = spi_psoc6_get_freqdiv(spi_cfg->frequency); data->ctx.config = spi_cfg; } else { /* Slave mode is not implemented yet. */ return -ENOTSUP; } return 0; } static void spi_psoc6_transceive_sync_loop(const struct device *dev) { const struct spi_psoc6_config *config = dev->config; struct spi_psoc6_data *data = dev->data; while (data->xfer.dataSize > 0U) { while (!Cy_SCB_IsTxComplete(config->base)) { ; } if (data->xfer.rxData != NULL) { Cy_SCB_SPI_ReadArray(config->base, data->xfer.rxData, data->xfer.dataSize); } else { Cy_SCB_ClearRxFifo(config->base); } spi_context_update_tx(&data->ctx, 1, data->xfer.dataSize); spi_context_update_rx(&data->ctx, 1, data->xfer.dataSize); spi_psoc6_transfer_next_packet(dev); } } static int spi_psoc6_transceive(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool asynchronous, struct k_poll_signal *signal) { const struct spi_psoc6_config *config = dev->config; struct spi_psoc6_data *data = dev->data; int ret; spi_context_lock(&data->ctx, asynchronous, signal, spi_cfg); LOG_DBG("\n\n"); ret = spi_psoc6_configure(dev, spi_cfg); if (ret) { goto out; } Cy_SCB_SPI_Init(config->base, &data->cfg, NULL); Cy_SCB_SPI_SetActiveSlaveSelect(config->base, spi_cfg->slave); Cy_SCB_SPI_Enable(config->base); spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1); spi_context_cs_control(&data->ctx, true); spi_psoc6_transfer_next_packet(dev); if (asynchronous) { Cy_SCB_SetMasterInterruptMask(config->base, CY_SCB_MASTER_INTR_SPI_DONE); } else { spi_psoc6_transceive_sync_loop(dev); } ret = spi_context_wait_for_completion(&data->ctx); Cy_SCB_SPI_Disable(config->base, NULL); out: spi_context_release(&data->ctx, ret); return ret; } static int spi_psoc6_transceive_sync(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { return spi_psoc6_transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL); } #ifdef CONFIG_SPI_ASYNC static int spi_psoc6_transceive_async(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, struct k_poll_signal *async) { return spi_psoc6_transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, async); } #endif /* CONFIG_SPI_ASYNC */ static int spi_psoc6_release(const struct device *dev, const struct spi_config *config) { struct spi_psoc6_data *data = dev->data; spi_context_unlock_unconditionally(&data->ctx); return 0; } static int spi_psoc6_init(const struct device *dev) { int err; const struct spi_psoc6_config *config = dev->config; struct spi_psoc6_data *data = dev->data; soc_gpio_list_configure(config->pins, config->num_pins); Cy_SysClk_PeriphAssignDivider(config->periph_id, CY_SYSCLK_DIV_8_BIT, SPI_PSOC6_CLK_DIV_NUMBER); Cy_SysClk_PeriphSetDivider(CY_SYSCLK_DIV_8_BIT, SPI_PSOC6_CLK_DIV_NUMBER, 0U); Cy_SysClk_PeriphEnableDivider(CY_SYSCLK_DIV_8_BIT, SPI_PSOC6_CLK_DIV_NUMBER); #ifdef CONFIG_SPI_ASYNC config->irq_config_func(dev); #endif err = spi_context_cs_configure_all(&data->ctx); if (err < 0) { return err; } return spi_psoc6_release(dev, NULL); } static const struct spi_driver_api spi_psoc6_driver_api = { .transceive = spi_psoc6_transceive_sync, #ifdef CONFIG_SPI_ASYNC .transceive_async = spi_psoc6_transceive_async, #endif .release = spi_psoc6_release, }; #define SPI_PSOC6_DEVICE_INIT(n) \ static void spi_psoc6_spi##n##_irq_cfg(const struct device *port); \ static const struct spi_psoc6_config spi_psoc6_config_##n = { \ .base = (CySCB_Type *)DT_INST_REG_ADDR(n), \ .periph_id = DT_INST_PROP(n, peripheral_id), \ .num_pins = CY_PSOC6_DT_INST_NUM_PINS(n), \ .pins = CY_PSOC6_DT_INST_PINS(n), \ .irq_config_func = spi_psoc6_spi##n##_irq_cfg, \ }; \ static struct spi_psoc6_data spi_psoc6_dev_data_##n = { \ SPI_CONTEXT_INIT_LOCK(spi_psoc6_dev_data_##n, ctx), \ SPI_CONTEXT_INIT_SYNC(spi_psoc6_dev_data_##n, ctx), \ SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx) \ }; \ DEVICE_DT_INST_DEFINE(n, &spi_psoc6_init, NULL, \ &spi_psoc6_dev_data_##n, \ &spi_psoc6_config_##n, POST_KERNEL, \ CONFIG_SPI_INIT_PRIORITY, \ &spi_psoc6_driver_api); \ static void spi_psoc6_spi##n##_irq_cfg(const struct device *port) \ { \ CY_PSOC6_DT_INST_NVIC_INSTALL(n, \ spi_psoc6_isr); \ }; DT_INST_FOREACH_STATUS_OKAY(SPI_PSOC6_DEVICE_INIT)