/* * Copyright (c) 2023 Antmicro * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT ambiq_mspi #include LOG_MODULE_REGISTER(mspi_ambiq); #include #include #include #include "spi_context.h" #include #define SPI_WORD_SIZE 8 #define MSPI_MAX_FREQ 96000000 #define MSPI_TIMEOUT_US 1000000 #define PWRCTRL_MAX_WAIT_US 5 #define MSPI_BUSY BIT(2) typedef int (*ambiq_mspi_pwr_func_t)(void); struct mspi_ambiq_config { uint32_t base; int size; uint32_t clock_freq; const struct pinctrl_dev_config *pcfg; ambiq_mspi_pwr_func_t pwr_func; }; struct mspi_ambiq_data { struct spi_context ctx; void *mspiHandle; am_hal_mspi_dev_config_t mspicfg; }; static int mspi_set_freq(uint32_t freq) { uint32_t d = MSPI_MAX_FREQ / freq; switch (d) { case AM_HAL_MSPI_CLK_96MHZ: case AM_HAL_MSPI_CLK_48MHZ: case AM_HAL_MSPI_CLK_32MHZ: case AM_HAL_MSPI_CLK_24MHZ: case AM_HAL_MSPI_CLK_16MHZ: case AM_HAL_MSPI_CLK_12MHZ: case AM_HAL_MSPI_CLK_8MHZ: case AM_HAL_MSPI_CLK_6MHZ: case AM_HAL_MSPI_CLK_4MHZ: case AM_HAL_MSPI_CLK_3MHZ: break; default: LOG_ERR("Frequency not supported!"); d = AM_HAL_MSPI_CLK_INVALID; break; } return d; } static int mspi_config(const struct device *dev, const struct spi_config *config) { struct mspi_ambiq_data *data = dev->data; int ret; am_hal_mspi_dev_config_t mspicfg = {0}; if (config->operation & SPI_HALF_DUPLEX) { LOG_ERR("Half-duplex not supported"); return -ENOTSUP; } if (SPI_WORD_SIZE_GET(config->operation) != 8) { LOG_ERR("Word size must be %d", SPI_WORD_SIZE); return -ENOTSUP; } if ((config->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) { LOG_ERR("Only single mode is currently supported"); return -ENOTSUP; } if (config->operation & SPI_LOCK_ON) { LOG_ERR("Lock On not supported"); return -ENOTSUP; } if (config->operation & SPI_TRANSFER_LSB) { LOG_ERR("LSB first not supported"); return -ENOTSUP; } if (config->operation & (SPI_MODE_CPOL | SPI_MODE_CPHA)) { if (config->operation & (SPI_MODE_CPOL && SPI_MODE_CPHA)) { mspicfg.eSpiMode = AM_HAL_MSPI_SPI_MODE_3; } else if (config->operation & SPI_MODE_CPOL) { mspicfg.eSpiMode = AM_HAL_MSPI_SPI_MODE_2; } else if (config->operation & SPI_MODE_CPHA) { mspicfg.eSpiMode = AM_HAL_MSPI_SPI_MODE_1; } else { mspicfg.eSpiMode = AM_HAL_MSPI_SPI_MODE_0; } } mspicfg.eClockFreq = mspi_set_freq(config->frequency); if (mspicfg.eClockFreq == AM_HAL_MSPI_CLK_INVALID) { return -ENOTSUP; } mspicfg.eDeviceConfig = AM_HAL_MSPI_FLASH_SERIAL_CE0; ret = am_hal_mspi_disable(data->mspiHandle); if (ret) { return ret; } ret = am_hal_mspi_device_configure(data->mspiHandle, &mspicfg); if (ret) { return ret; } ret = am_hal_mspi_enable(data->mspiHandle); return ret; } static int mspi_ambiq_xfer(const struct device *dev, const struct spi_config *config) { struct mspi_ambiq_data *data = dev->data; struct spi_context *ctx = &data->ctx; int ret; am_hal_mspi_pio_transfer_t trans = {0}; trans.bSendAddr = true; trans.bSendInstr = true; trans.ui16DeviceInstr = *ctx->tx_buf; spi_context_update_tx(ctx, 1, 1); trans.ui32DeviceAddr = *ctx->tx_buf; if (ctx->rx_buf != NULL) { spi_context_update_rx(ctx, 1, ctx->rx_len); trans.eDirection = AM_HAL_MSPI_RX; trans.pui32Buffer = (uint32_t *)ctx->rx_buf; trans.ui32NumBytes = ctx->rx_len; } else if (ctx->tx_buf != NULL) { spi_context_update_tx(ctx, 1, 1); trans.eDirection = AM_HAL_MSPI_TX; trans.pui32Buffer = (uint32_t *)ctx->tx_buf; trans.ui32NumBytes = ctx->tx_len; } ret = am_hal_mspi_blocking_transfer(data->mspiHandle, &trans, MSPI_TIMEOUT_US); spi_context_complete(ctx, dev, 0); return ret; } static int mspi_ambiq_transceive(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { struct mspi_ambiq_data *data = dev->data; int ret = mspi_config(dev, config); if (ret) { return ret; } if (!tx_bufs && !rx_bufs) { return 0; } spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1); ret = mspi_ambiq_xfer(dev, config); return ret; } static int mspi_ambiq_release(const struct device *dev, const struct spi_config *config) { const struct mspi_ambiq_config *cfg = dev->config; if (sys_read32(cfg->base) & MSPI_BUSY) { return -EBUSY; } return 0; } static const struct spi_driver_api mspi_ambiq_driver_api = { .transceive = mspi_ambiq_transceive, .release = mspi_ambiq_release, }; static int mspi_ambiq_init(const struct device *dev) { struct mspi_ambiq_data *data = dev->data; const struct mspi_ambiq_config *cfg = dev->config; am_hal_mspi_config_t mspiCfg = {0}; mspiCfg.pTCB = NULL; int ret = am_hal_mspi_initialize((cfg->base - REG_MSPI_BASEADDR) / (cfg->size * 4), &data->mspiHandle); if (ret) { return ret; } ret = cfg->pwr_func(); ret = am_hal_mspi_configure(data->mspiHandle, &mspiCfg); if (ret) { return ret; } ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); return ret; } #define AMBIQ_MSPI_DEFINE(n) \ PINCTRL_DT_INST_DEFINE(n); \ static int pwr_on_ambiq_mspi_##n(void) \ { \ uint32_t addr = DT_REG_ADDR(DT_INST_PHANDLE(n, ambiq_pwrcfg)) + \ DT_INST_PHA(n, ambiq_pwrcfg, offset); \ sys_write32((sys_read32(addr) | DT_INST_PHA(n, ambiq_pwrcfg, mask)), addr); \ k_busy_wait(PWRCTRL_MAX_WAIT_US); \ return 0; \ } \ static struct mspi_ambiq_data mspi_ambiq_data##n = { \ SPI_CONTEXT_INIT_SYNC(mspi_ambiq_data##n, ctx)}; \ static const struct mspi_ambiq_config mspi_ambiq_config##n = { \ .base = DT_INST_REG_ADDR(n), \ .size = DT_INST_REG_SIZE(n), \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \ .pwr_func = pwr_on_ambiq_mspi_##n, \ }; \ DEVICE_DT_INST_DEFINE(n, mspi_ambiq_init, NULL, &mspi_ambiq_data##n, \ &mspi_ambiq_config##n, POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \ &mspi_ambiq_driver_api); DT_INST_FOREACH_STATUS_OKAY(AMBIQ_MSPI_DEFINE)