/* Copyright 2023 The ChromiumOS Authors * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #define OSTIMER64_BASE DT_REG_ADDR(DT_NODELABEL(ostimer64)) #define OSTIMER_BASE DT_REG_ADDR(DT_NODELABEL(ostimer0)) /* * This device has a LOT of timer hardware. There are SIX * instantiated devices, with THREE different interfaces! Not * including the three Xtensa CCOUNT timers! * * In practice only "ostimer0" is used as an interrupt source by the * original SOF code, and the "ostimer64" and "platform" timers * reflect the same underlying clock (though they're different * counters with different values). There is also a "ptimer" device, * which is unused by SOF and not exercised by this driver. * * The driver architecture itself is sort of a hybrid of what other * Zephyr drivers use: there is no (or at least no documented) * comparator facility. The "ostimer64" is used as the system clock, * which is a 13 MHz 64 bit up-counter. But timeout interrupts are * delivered by ostimers[0], which is a 32 bit (!) down-counter (!!) * running at twice (!!!) the rate: 26MHz. Testing shows they're * slaved the same underlying clock -- they don't skew relative to * each other. */ struct mtk_ostimer { unsigned int con; unsigned int rst; unsigned int cur; unsigned int irq_ack; }; struct mtk_ostimer64 { unsigned int con; unsigned int init_l; unsigned int init_h; unsigned int cur_l; unsigned int cur_h; unsigned int tval_h; unsigned int irq_ack; }; #define OSTIMER64 (*(volatile struct mtk_ostimer64 *)OSTIMER64_BASE) #define OSTIMERS ((volatile struct mtk_ostimer *)OSTIMER_BASE) #define OSTIMER_CON_ENABLE BIT(0) #define OSTIMER_CON_CLKSRC_MASK 0x30 #define OSTIMER_CON_CLKSRC_32K 0x00 /* 32768 Hz */ #define OSTIMER_CON_CLKSRC_26M 0x10 /* 26 MHz */ #define OSTIMER_CON_CLKSRC_BCLK 0x20 /* CPU speed, 720 MHz */ #define OSTIMER_CON_CLKSRC_PCLK 0x30 /* ~312 MHz experimentally */ #define OSTIMER_IRQ_ACK_ENABLE BIT(4) /* read = status, write = enable */ #define OSTIMER_IRQ_ACK_CLEAR BIT(5) #define OST64_HZ 13000000U #define OST_HZ 26000000U #define OST64_PER_TICK (OST64_HZ / CONFIG_SYS_CLOCK_TICKS_PER_SEC) #define OST_PER_TICK (OST_HZ / CONFIG_SYS_CLOCK_TICKS_PER_SEC) #define MAX_TICKS ((0xffffffffU - OST_PER_TICK) / OST_PER_TICK) #define CYC64_MAX (0xffffffff - OST64_PER_TICK) static struct k_spinlock lock; static uint64_t last_announce; uint32_t sys_clock_cycle_get_32(void) { return OSTIMER64.cur_l; } uint64_t sys_clock_cycle_get_64(void) { uint32_t l, h0, h1; do { h0 = OSTIMER64.cur_h; l = OSTIMER64.cur_l; h1 = OSTIMER64.cur_h; } while (h0 != h1); return (((uint64_t)h0) << 32) | l; } void sys_clock_set_timeout(int32_t ticks, bool idle) { /* Compute desired expiration time */ uint64_t now = sys_clock_cycle_get_64(); uint64_t end = now + CLAMP(ticks - 1, 0, MAX_TICKS) * OST64_PER_TICK; uint32_t dt = (uint32_t)MIN(end - last_announce, CYC64_MAX); /* Round up to tick boundary */ dt = ((dt + OST64_PER_TICK - 1) / OST64_PER_TICK) * OST64_PER_TICK; /* Convert to "fast" OSTIMER[0] cycles! */ uint32_t cyc = 2 * (dt - (uint32_t)(now - last_announce)); /* Writes to RST need to be done when the device is disabled, * and automatically reset CUR (which reads zero while disabled) */ OSTIMERS[0].con &= ~OSTIMER_CON_ENABLE; OSTIMERS[0].rst = cyc; OSTIMERS[0].irq_ack |= OSTIMER_IRQ_ACK_CLEAR; OSTIMERS[0].irq_ack |= OSTIMER_IRQ_ACK_ENABLE; OSTIMERS[0].con |= OSTIMER_CON_ENABLE; } uint32_t sys_clock_elapsed(void) { k_spinlock_key_t key = k_spin_lock(&lock); uint32_t ret; ret = (uint32_t)((sys_clock_cycle_get_64() - last_announce) / OST64_PER_TICK); k_spin_unlock(&lock, key); return ret; } static void timer_isr(__maybe_unused void *arg) { /* Note: no locking. As it happens, on MT8195/8186/8188 all * Zephyr-usable interrupts are delivered at the same level. * So we can't be preempted and there's actually no need to * take a spinlock here. But ideally we should verify/detect * this instead of trusting blindly; this is fragile if future * devices add nested interrupts. */ uint64_t dcyc = sys_clock_cycle_get_64() - last_announce; uint64_t ticks = dcyc / OST64_PER_TICK; /* Leave the device disabled after clearing the interrupt, * sys_clock_set_timeout() is responsible for turning it back * on. */ OSTIMERS[0].irq_ack |= OSTIMER_IRQ_ACK_CLEAR; OSTIMERS[0].con &= ~OSTIMER_CON_ENABLE; OSTIMERS[0].irq_ack &= ~OSTIMER_IRQ_ACK_ENABLE; last_announce += ticks * OST64_PER_TICK; sys_clock_announce(ticks); if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { sys_clock_set_timeout(1, false); } } static int mtk_adsp_timer_init(void) { IRQ_CONNECT(DT_IRQN(DT_NODELABEL(ostimer0)), 0, timer_isr, 0, 0); irq_enable(DT_IRQN(DT_NODELABEL(ostimer0))); /* Disable all timers */ for (int i = 0; i < 4; i++) { OSTIMERS[i].con &= ~OSTIMER_CON_ENABLE; OSTIMERS[i].irq_ack |= OSTIMER_IRQ_ACK_CLEAR; OSTIMERS[i].irq_ack &= ~OSTIMER_IRQ_ACK_ENABLE; } /* Set them up to use the same clock. Note that OSTIMER64 has * a built-in divide by two (or it's configurable and I don't * know the register) and exposes a 13 MHz counter! */ OSTIMERS[0].con = ((OSTIMERS[0].con & ~OSTIMER_CON_CLKSRC_MASK) | OSTIMER_CON_CLKSRC_26M); OSTIMERS[0].con |= OSTIMER_CON_ENABLE; /* Clock is free running and survives reset, doesn't start at zero */ last_announce = sys_clock_cycle_get_64(); return 0; } SYS_INIT(mtk_adsp_timer_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);