/* * Copyright (c) 2017 - 2018, Nordic Semiconductor ASA * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58 #include #include #endif #include #include #include #include #include LOG_MODULE_REGISTER(spi_nrfx_spim, CONFIG_SPI_LOG_LEVEL); #include "spi_context.h" #if (CONFIG_SPI_NRFX_RAM_BUFFER_SIZE > 0) #define SPI_BUFFER_IN_RAM 1 #endif /* Maximum chunk length (depends on the EasyDMA bits, equal for all instances) */ #define MAX_CHUNK_LEN BIT_MASK(SPIM0_EASYDMA_MAXCNT_SIZE) struct spi_nrfx_data { struct spi_context ctx; const struct device *dev; size_t chunk_len; bool busy; bool initialized; #if SPI_BUFFER_IN_RAM uint8_t *buffer; #endif #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58 bool anomaly_58_workaround_active; uint8_t ppi_ch; uint8_t gpiote_ch; #endif }; struct spi_nrfx_config { nrfx_spim_t spim; uint32_t max_freq; nrfx_spim_config_t def_config; void (*irq_connect)(void); #ifdef CONFIG_PINCTRL const struct pinctrl_dev_config *pcfg; #endif #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58 bool anomaly_58_workaround; #endif }; static void event_handler(const nrfx_spim_evt_t *p_event, void *p_context); static inline nrf_spim_frequency_t get_nrf_spim_frequency(uint32_t frequency) { /* Get the highest supported frequency not exceeding the requested one. */ if (frequency < 250000) { return NRF_SPIM_FREQ_125K; } else if (frequency < 500000) { return NRF_SPIM_FREQ_250K; } else if (frequency < 1000000) { return NRF_SPIM_FREQ_500K; } else if (frequency < 2000000) { return NRF_SPIM_FREQ_1M; } else if (frequency < 4000000) { return NRF_SPIM_FREQ_2M; } else if (frequency < 8000000) { return NRF_SPIM_FREQ_4M; /* Only the devices with HS-SPI can use SPI clock higher than 8 MHz and * have SPIM_FREQUENCY_FREQUENCY_M32 defined in their own bitfields.h */ #if defined(SPIM_FREQUENCY_FREQUENCY_M32) } else if (frequency < 16000000) { return NRF_SPIM_FREQ_8M; } else if (frequency < 32000000) { return NRF_SPIM_FREQ_16M; } else { return NRF_SPIM_FREQ_32M; #else } else { return NRF_SPIM_FREQ_8M; #endif } } static inline nrf_spim_mode_t get_nrf_spim_mode(uint16_t operation) { if (SPI_MODE_GET(operation) & SPI_MODE_CPOL) { if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) { return NRF_SPIM_MODE_3; } else { return NRF_SPIM_MODE_2; } } else { if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) { return NRF_SPIM_MODE_1; } else { return NRF_SPIM_MODE_0; } } } static inline nrf_spim_bit_order_t get_nrf_spim_bit_order(uint16_t operation) { if (operation & SPI_TRANSFER_LSB) { return NRF_SPIM_BIT_ORDER_LSB_FIRST; } else { return NRF_SPIM_BIT_ORDER_MSB_FIRST; } } static int configure(const struct device *dev, const struct spi_config *spi_cfg) { struct spi_nrfx_data *dev_data = dev->data; const struct spi_nrfx_config *dev_config = dev->config; struct spi_context *ctx = &dev_data->ctx; uint32_t max_freq = dev_config->max_freq; nrfx_spim_config_t config; nrfx_err_t result; if (dev_data->initialized && spi_context_configured(ctx, spi_cfg)) { /* Already configured. No need to do it again. */ return 0; } if (spi_cfg->operation & SPI_HALF_DUPLEX) { LOG_ERR("Half-duplex not supported"); return -ENOTSUP; } if (SPI_OP_MODE_GET(spi_cfg->operation) != SPI_OP_MODE_MASTER) { LOG_ERR("Slave mode is not supported on %s", dev->name); return -EINVAL; } if (spi_cfg->operation & SPI_MODE_LOOP) { LOG_ERR("Loopback mode is not supported"); return -EINVAL; } if (IS_ENABLED(CONFIG_SPI_EXTENDED_MODES) && (spi_cfg->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) { LOG_ERR("Only single line mode is supported"); return -EINVAL; } if (SPI_WORD_SIZE_GET(spi_cfg->operation) != 8) { LOG_ERR("Word sizes other than 8 bits are not supported"); return -EINVAL; } if (spi_cfg->frequency < 125000) { LOG_ERR("Frequencies lower than 125 kHz are not supported"); return -EINVAL; } #if defined(CONFIG_SOC_NRF5340_CPUAPP) /* On nRF5340, the 32 Mbps speed is supported by the application core * when it is running at 128 MHz (see the Timing specifications section * in the nRF5340 PS). */ if (max_freq > 16000000 && nrf_clock_hfclk_div_get(NRF_CLOCK) != NRF_CLOCK_HFCLK_DIV_1) { max_freq = 16000000; } #endif config = dev_config->def_config; /* Limit the frequency to that supported by the SPIM instance. */ config.frequency = get_nrf_spim_frequency(MIN(spi_cfg->frequency, max_freq)); config.mode = get_nrf_spim_mode(spi_cfg->operation); config.bit_order = get_nrf_spim_bit_order(spi_cfg->operation); if (dev_data->initialized) { nrfx_spim_uninit(&dev_config->spim); dev_data->initialized = false; } result = nrfx_spim_init(&dev_config->spim, &config, event_handler, dev_data); if (result != NRFX_SUCCESS) { LOG_ERR("Failed to initialize nrfx driver: %08x", result); return -EIO; } dev_data->initialized = true; ctx->config = spi_cfg; return 0; } #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58 /* * Brief Workaround for transmitting 1 byte with SPIM. * * Derived from the setup_workaround_for_ftpan_58() function from * the nRF52832 Rev 1 Errata v1.6 document anomaly 58 workaround. * * Warning Must not be used when transmitting multiple bytes. * * Warning After this workaround is used, the user must reset the PPI * channel and the GPIOTE channel before attempting to transmit multiple * bytes. */ static void anomaly_58_workaround_setup(const struct device *dev) { struct spi_nrfx_data *dev_data = dev->data; const struct spi_nrfx_config *dev_config = dev->config; NRF_SPIM_Type *spim = dev_config->spim.p_reg; uint32_t ppi_ch = dev_data->ppi_ch; uint32_t gpiote_ch = dev_data->gpiote_ch; uint32_t eep = (uint32_t)&NRF_GPIOTE->EVENTS_IN[gpiote_ch]; uint32_t tep = (uint32_t)&spim->TASKS_STOP; dev_data->anomaly_58_workaround_active = true; /* Create an event when SCK toggles */ nrf_gpiote_event_configure(NRF_GPIOTE, gpiote_ch, spim->PSEL.SCK, GPIOTE_CONFIG_POLARITY_Toggle); nrf_gpiote_event_enable(NRF_GPIOTE, gpiote_ch); /* Stop the spim instance when SCK toggles */ nrf_ppi_channel_endpoint_setup(NRF_PPI, ppi_ch, eep, tep); nrf_ppi_channel_enable(NRF_PPI, ppi_ch); /* The spim instance cannot be stopped mid-byte, so it will finish * transmitting the first byte and then stop. Effectively ensuring * that only 1 byte is transmitted. */ } static void anomaly_58_workaround_clear(struct spi_nrfx_data *dev_data) { uint32_t ppi_ch = dev_data->ppi_ch; uint32_t gpiote_ch = dev_data->gpiote_ch; if (dev_data->anomaly_58_workaround_active) { nrf_ppi_channel_disable(NRF_PPI, ppi_ch); nrf_gpiote_task_disable(NRF_GPIOTE, gpiote_ch); dev_data->anomaly_58_workaround_active = false; } } static int anomaly_58_workaround_init(const struct device *dev) { struct spi_nrfx_data *dev_data = dev->data; const struct spi_nrfx_config *dev_config = dev->config; nrfx_err_t err_code; dev_data->anomaly_58_workaround_active = false; if (dev_config->anomaly_58_workaround) { err_code = nrfx_ppi_channel_alloc(&dev_data->ppi_ch); if (err_code != NRFX_SUCCESS) { LOG_ERR("Failed to allocate PPI channel"); return -ENODEV; } err_code = nrfx_gpiote_channel_alloc(&dev_data->gpiote_ch); if (err_code != NRFX_SUCCESS) { LOG_ERR("Failed to allocate GPIOTE channel"); return -ENODEV; } LOG_DBG("PAN 58 workaround enabled for %s: ppi %u, gpiote %u", dev->name, dev_data->ppi_ch, dev_data->gpiote_ch); } return 0; } #endif static void transfer_next_chunk(const struct device *dev) { struct spi_nrfx_data *dev_data = dev->data; const struct spi_nrfx_config *dev_config = dev->config; struct spi_context *ctx = &dev_data->ctx; int error = 0; size_t chunk_len = spi_context_max_continuous_chunk(ctx); if (chunk_len > 0) { nrfx_spim_xfer_desc_t xfer; nrfx_err_t result; const uint8_t *tx_buf = ctx->tx_buf; #if (CONFIG_SPI_NRFX_RAM_BUFFER_SIZE > 0) if (spi_context_tx_buf_on(ctx) && !nrfx_is_in_ram(tx_buf)) { if (chunk_len > CONFIG_SPI_NRFX_RAM_BUFFER_SIZE) { chunk_len = CONFIG_SPI_NRFX_RAM_BUFFER_SIZE; } memcpy(dev_data->buffer, tx_buf, chunk_len); tx_buf = dev_data->buffer; } #endif if (chunk_len > MAX_CHUNK_LEN) { chunk_len = MAX_CHUNK_LEN; } dev_data->chunk_len = chunk_len; xfer.p_tx_buffer = tx_buf; xfer.tx_length = spi_context_tx_buf_on(ctx) ? chunk_len : 0; xfer.p_rx_buffer = ctx->rx_buf; xfer.rx_length = spi_context_rx_buf_on(ctx) ? chunk_len : 0; #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58 if (xfer.rx_length == 1 && xfer.tx_length <= 1) { if (dev_config->anomaly_58_workaround) { anomaly_58_workaround_setup(dev); } else { LOG_WRN("Transaction aborted since it would trigger " "nRF52832 PAN 58"); error = -EIO; } } #endif if (error == 0) { result = nrfx_spim_xfer(&dev_config->spim, &xfer, 0); if (result == NRFX_SUCCESS) { return; } error = -EIO; #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58 anomaly_58_workaround_clear(dev_data); #endif } } spi_context_cs_control(ctx, false); LOG_DBG("Transaction finished with status %d", error); spi_context_complete(ctx, error); dev_data->busy = false; } static void event_handler(const nrfx_spim_evt_t *p_event, void *p_context) { struct spi_nrfx_data *dev_data = p_context; if (p_event->type == NRFX_SPIM_EVENT_DONE) { #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58 anomaly_58_workaround_clear(dev_data); #endif spi_context_update_tx(&dev_data->ctx, 1, dev_data->chunk_len); spi_context_update_rx(&dev_data->ctx, 1, dev_data->chunk_len); transfer_next_chunk(dev_data->dev); } } static int transceive(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool asynchronous, struct k_poll_signal *signal) { struct spi_nrfx_data *dev_data = dev->data; int error; spi_context_lock(&dev_data->ctx, asynchronous, signal, spi_cfg); error = configure(dev, spi_cfg); if (error == 0) { dev_data->busy = true; spi_context_buffers_setup(&dev_data->ctx, tx_bufs, rx_bufs, 1); spi_context_cs_control(&dev_data->ctx, true); transfer_next_chunk(dev); error = spi_context_wait_for_completion(&dev_data->ctx); } spi_context_release(&dev_data->ctx, error); return error; } static int spi_nrfx_transceive(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL); } #ifdef CONFIG_SPI_ASYNC static int spi_nrfx_transceive_async(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, struct k_poll_signal *async) { return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, async); } #endif /* CONFIG_SPI_ASYNC */ static int spi_nrfx_release(const struct device *dev, const struct spi_config *spi_cfg) { struct spi_nrfx_data *dev_data = dev->data; if (!spi_context_configured(&dev_data->ctx, spi_cfg)) { return -EINVAL; } if (dev_data->busy) { return -EBUSY; } spi_context_unlock_unconditionally(&dev_data->ctx); return 0; } static const struct spi_driver_api spi_nrfx_driver_api = { .transceive = spi_nrfx_transceive, #ifdef CONFIG_SPI_ASYNC .transceive_async = spi_nrfx_transceive_async, #endif .release = spi_nrfx_release, }; #ifdef CONFIG_PM_DEVICE static int spim_nrfx_pm_action(const struct device *dev, enum pm_device_action action) { int ret = 0; struct spi_nrfx_data *dev_data = dev->data; const struct spi_nrfx_config *dev_config = dev->config; switch (action) { case PM_DEVICE_ACTION_RESUME: #ifdef CONFIG_PINCTRL ret = pinctrl_apply_state(dev_config->pcfg, PINCTRL_STATE_DEFAULT); if (ret < 0) { return ret; } #endif /* nrfx_spim_init() will be called at configuration before * the next transfer. */ break; case PM_DEVICE_ACTION_SUSPEND: if (dev_data->initialized) { nrfx_spim_uninit(&dev_config->spim); dev_data->initialized = false; } #ifdef CONFIG_PINCTRL ret = pinctrl_apply_state(dev_config->pcfg, PINCTRL_STATE_SLEEP); if (ret < 0) { return ret; } #endif break; default: ret = -ENOTSUP; } return ret; } #endif /* CONFIG_PM_DEVICE */ static int spi_nrfx_init(const struct device *dev) { const struct spi_nrfx_config *dev_config = dev->config; struct spi_nrfx_data *dev_data = dev->data; int err; #ifdef CONFIG_PINCTRL err = pinctrl_apply_state(dev_config->pcfg, PINCTRL_STATE_DEFAULT); if (err < 0) { return err; } #endif dev_config->irq_connect(); err = spi_context_cs_configure_all(&dev_data->ctx); if (err < 0) { return err; } spi_context_unlock_unconditionally(&dev_data->ctx); #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58 return anomaly_58_workaround_init(dev); #else return 0; #endif } /* * We use NODELABEL here because the nrfx API requires us to call * functions which are named according to SoC peripheral instance * being operated on. Since DT_INST() makes no guarantees about that, * it won't work. */ #define SPIM(idx) DT_NODELABEL(spi##idx) #define SPIM_PROP(idx, prop) DT_PROP(SPIM(idx), prop) #define SPIM_HAS_PROP(idx, prop) DT_NODE_HAS_PROP(SPIM(idx), prop) #define SPIM_NRFX_MISO_PULL(idx) \ (SPIM_PROP(idx, miso_pull_up) \ ? SPIM_PROP(idx, miso_pull_down) \ ? -1 /* invalid configuration */\ : NRF_GPIO_PIN_PULLUP \ : SPIM_PROP(idx, miso_pull_down) \ ? NRF_GPIO_PIN_PULLDOWN \ : NRF_GPIO_PIN_NOPULL) #define SPI_NRFX_SPIM_EXTENDED_CONFIG(idx) \ IF_ENABLED(NRFX_SPIM_EXTENDED_ENABLED, \ (.dcx_pin = NRFX_SPIM_PIN_NOT_USED, \ COND_CODE_1(SPIM_PROP(idx, rx_delay_supported), \ (.rx_delay = SPIM_PROP(idx, rx_delay),), \ ()) \ )) #define SPI_NRFX_SPIM_PIN_CFG(idx) \ COND_CODE_1(CONFIG_PINCTRL, \ (.skip_gpio_cfg = true, \ .skip_psel_cfg = true,), \ (.sck_pin = SPIM_PROP(idx, sck_pin), \ .mosi_pin = DT_PROP_OR(SPIM(idx), mosi_pin, \ NRFX_SPIM_PIN_NOT_USED), \ .miso_pin = DT_PROP_OR(SPIM(idx), miso_pin, \ NRFX_SPIM_PIN_NOT_USED), \ .miso_pull = SPIM_NRFX_MISO_PULL(idx),)) #define SPI_NRFX_SPIM_DEFINE(idx) \ NRF_DT_CHECK_PIN_ASSIGNMENTS(SPIM(idx), 1, \ sck_pin, mosi_pin, miso_pin); \ BUILD_ASSERT(IS_ENABLED(CONFIG_PINCTRL) || \ !(SPIM_PROP(idx, miso_pull_up) && \ SPIM_PROP(idx, miso_pull_down)), \ "SPIM"#idx \ ": cannot enable both pull-up and pull-down on MISO line"); \ static void irq_connect##idx(void) \ { \ IRQ_CONNECT(DT_IRQN(SPIM(idx)), DT_IRQ(SPIM(idx), priority), \ nrfx_isr, nrfx_spim_##idx##_irq_handler, 0); \ } \ IF_ENABLED(SPI_BUFFER_IN_RAM, \ (static uint8_t spim_##idx##_buffer \ [CONFIG_SPI_NRFX_RAM_BUFFER_SIZE] \ SPIM_MEMORY_SECTION(idx);)) \ static struct spi_nrfx_data spi_##idx##_data = { \ SPI_CONTEXT_INIT_LOCK(spi_##idx##_data, ctx), \ SPI_CONTEXT_INIT_SYNC(spi_##idx##_data, ctx), \ SPI_CONTEXT_CS_GPIOS_INITIALIZE(SPIM(idx), ctx) \ IF_ENABLED(SPI_BUFFER_IN_RAM, \ (.buffer = spim_##idx##_buffer,)) \ .dev = DEVICE_DT_GET(SPIM(idx)), \ .busy = false, \ }; \ IF_ENABLED(CONFIG_PINCTRL, (PINCTRL_DT_DEFINE(SPIM(idx)))); \ static const struct spi_nrfx_config spi_##idx##z_config = { \ .spim = { \ .p_reg = (NRF_SPIM_Type *)DT_REG_ADDR(SPIM(idx)), \ .drv_inst_idx = NRFX_SPIM##idx##_INST_IDX, \ }, \ .max_freq = SPIM_PROP(idx, max_frequency), \ .def_config = { \ SPI_NRFX_SPIM_PIN_CFG(idx) \ .ss_pin = NRFX_SPIM_PIN_NOT_USED, \ .orc = SPIM_PROP(idx, overrun_character), \ SPI_NRFX_SPIM_EXTENDED_CONFIG(idx) \ }, \ .irq_connect = irq_connect##idx, \ COND_CODE_1(CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58, \ (.anomaly_58_workaround = \ SPIM_PROP(idx, anomaly_58_workaround),), \ ()) \ IF_ENABLED(CONFIG_PINCTRL, \ (.pcfg = PINCTRL_DT_DEV_CONFIG_GET(SPIM(idx)),)) \ }; \ PM_DEVICE_DT_DEFINE(SPIM(idx), spim_nrfx_pm_action); \ DEVICE_DT_DEFINE(SPIM(idx), \ spi_nrfx_init, \ PM_DEVICE_DT_GET(SPIM(idx)), \ &spi_##idx##_data, \ &spi_##idx##z_config, \ POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \ &spi_nrfx_driver_api) #define SPIM_MEMORY_SECTION(idx) \ COND_CODE_1(SPIM_HAS_PROP(idx, memory_regions), \ (__attribute__((__section__(LINKER_DT_NODE_REGION_NAME( \ DT_PHANDLE(SPIM(idx), memory_regions)))))), \ ()) #ifdef CONFIG_SPI_0_NRF_SPIM SPI_NRFX_SPIM_DEFINE(0); #endif #ifdef CONFIG_SPI_1_NRF_SPIM SPI_NRFX_SPIM_DEFINE(1); #endif #ifdef CONFIG_SPI_2_NRF_SPIM SPI_NRFX_SPIM_DEFINE(2); #endif #ifdef CONFIG_SPI_3_NRF_SPIM SPI_NRFX_SPIM_DEFINE(3); #endif #ifdef CONFIG_SPI_4_NRF_SPIM SPI_NRFX_SPIM_DEFINE(4); #endif