/* * Copyright (c) 2010-2014 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief Kernel initialization module * * This module contains routines that are used to initialize the kernel. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* kernel build timestamp items */ #define BUILD_TIMESTAMP "BUILD: " __DATE__ " " __TIME__ /* boot banner items */ #if defined(CONFIG_BOOT_DELAY) && CONFIG_BOOT_DELAY > 0 #define BOOT_DELAY_BANNER " (delayed boot " \ STRINGIFY(CONFIG_BOOT_DELAY) "ms)" static const unsigned int boot_delay = CONFIG_BOOT_DELAY; #else #define BOOT_DELAY_BANNER "" static const unsigned int boot_delay; #endif #ifdef BUILD_VERSION #define BOOT_BANNER "Booting Zephyr OS " \ STRINGIFY(BUILD_VERSION) BOOT_DELAY_BANNER #else #define BOOT_BANNER "Booting Zephyr OS " \ KERNEL_VERSION_STRING BOOT_DELAY_BANNER #endif #if !defined(CONFIG_BOOT_BANNER) #define PRINT_BOOT_BANNER() do { } while (false) #else #define PRINT_BOOT_BANNER() printk("***** " BOOT_BANNER " *****\n") #endif /* boot time measurement items */ #ifdef CONFIG_BOOT_TIME_MEASUREMENT u64_t __noinit __start_time_stamp; /* timestamp when kernel starts */ u64_t __noinit __main_time_stamp; /* timestamp when main task starts */ u64_t __noinit __idle_time_stamp; /* timestamp when CPU goes idle */ #endif /* init/main and idle threads */ #define IDLE_STACK_SIZE CONFIG_IDLE_STACK_SIZE #define MAIN_STACK_SIZE CONFIG_MAIN_STACK_SIZE K_THREAD_STACK_DEFINE(_main_stack, MAIN_STACK_SIZE); K_THREAD_STACK_DEFINE(_idle_stack, IDLE_STACK_SIZE); static struct k_thread _main_thread_s; static struct k_thread _idle_thread_s; k_tid_t const _main_thread = (k_tid_t)&_main_thread_s; k_tid_t const _idle_thread = (k_tid_t)&_idle_thread_s; /* * storage space for the interrupt stack * * Note: This area is used as the system stack during kernel initialization, * since the kernel hasn't yet set up its own stack areas. The dual purposing * of this area is safe since interrupts are disabled until the kernel context * switches to the init thread. */ K_THREAD_STACK_DEFINE(_interrupt_stack, CONFIG_ISR_STACK_SIZE); /* * Similar idle thread & interrupt stack definitions for the * auxiliary CPUs. The declaration macros aren't set up to define an * array, so do it with a simple test for up to 4 processors. Should * clean this up in the future. */ #if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 1 K_THREAD_STACK_DEFINE(_idle_stack1, IDLE_STACK_SIZE); static struct k_thread _idle_thread1_s; k_tid_t const _idle_thread1 = (k_tid_t)&_idle_thread1_s; K_THREAD_STACK_DEFINE(_interrupt_stack1, CONFIG_ISR_STACK_SIZE); #endif #if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 2 K_THREAD_STACK_DEFINE(_idle_stack2, IDLE_STACK_SIZE); static struct k_thread _idle_thread2_s; k_tid_t const _idle_thread2 = (k_tid_t)&_idle_thread2_s; K_THREAD_STACK_DEFINE(_interrupt_stack2, CONFIG_ISR_STACK_SIZE); #endif #if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 3 K_THREAD_STACK_DEFINE(_idle_stack3, IDLE_STACK_SIZE); static struct k_thread _idle_thread3_s; k_tid_t const _idle_thread3 = (k_tid_t)&_idle_thread3_s; K_THREAD_STACK_DEFINE(_interrupt_stack3, CONFIG_ISR_STACK_SIZE); #endif #ifdef CONFIG_SYS_CLOCK_EXISTS #define initialize_timeouts() do { \ sys_dlist_init(&_timeout_q); \ } while ((0)) #else #define initialize_timeouts() do { } while ((0)) #endif extern void idle(void *unused1, void *unused2, void *unused3); /** * * @brief Clear BSS * * This routine clears the BSS region, so all bytes are 0. * * @return N/A */ void _bss_zero(void) { (void)memset(&__bss_start, 0, ((u32_t) &__bss_end - (u32_t) &__bss_start)); #ifdef CONFIG_CCM_BASE_ADDRESS (void)memset(&__ccm_bss_start, 0, ((u32_t) &__ccm_bss_end - (u32_t) &__ccm_bss_start)); #endif #ifdef CONFIG_APPLICATION_MEMORY (void)memset(&__app_bss_start, 0, ((u32_t) &__app_bss_end - (u32_t) &__app_bss_start)); #endif } #ifdef CONFIG_XIP /** * * @brief Copy the data section from ROM to RAM * * This routine copies the data section from ROM to RAM. * * @return N/A */ void _data_copy(void) { (void)memcpy(&__data_ram_start, &__data_rom_start, ((u32_t) &__data_ram_end - (u32_t) &__data_ram_start)); #ifdef CONFIG_CCM_BASE_ADDRESS (void)memcpy(&__ccm_data_start, &__ccm_data_rom_start, ((u32_t) &__ccm_data_end - (u32_t) &__ccm_data_start)); #endif #ifdef CONFIG_APP_SHARED_MEM (void)memcpy(&_app_smem_start, &_app_smem_rom_start, ((u32_t) &_app_smem_end - (u32_t) &_app_smem_start)); #endif #ifdef CONFIG_APPLICATION_MEMORY (void)memcpy(&__app_data_ram_start, &__app_data_rom_start, ((u32_t) &__app_data_ram_end - (u32_t) &__app_data_ram_start)); #endif } #endif /** * * @brief Mainline for kernel's background thread * * This routine completes kernel initialization by invoking the remaining * init functions, then invokes application's main() routine. * * @return N/A */ static void bg_thread_main(void *unused1, void *unused2, void *unused3) { ARG_UNUSED(unused1); ARG_UNUSED(unused2); ARG_UNUSED(unused3); _sys_device_do_config_level(_SYS_INIT_LEVEL_POST_KERNEL); #if CONFIG_STACK_POINTER_RANDOM z_stack_adjust_initialized = 1; #endif if (boot_delay > 0) { printk("***** delaying boot " STRINGIFY(CONFIG_BOOT_DELAY) "ms (per build configuration) *****\n"); k_busy_wait(CONFIG_BOOT_DELAY * USEC_PER_MSEC); } PRINT_BOOT_BANNER(); /* Final init level before app starts */ _sys_device_do_config_level(_SYS_INIT_LEVEL_APPLICATION); #ifdef CONFIG_CPLUSPLUS /* Process the .ctors and .init_array sections */ extern void __do_global_ctors_aux(void); extern void __do_init_array_aux(void); __do_global_ctors_aux(); __do_init_array_aux(); #endif _init_static_threads(); #ifdef CONFIG_SMP smp_init(); #endif #ifdef CONFIG_BOOT_TIME_MEASUREMENT /* record timestamp for kernel's _main() function */ extern u64_t __main_time_stamp; __main_time_stamp = (u64_t)k_cycle_get_32(); #endif extern void main(void); main(); /* Terminate thread normally since it has no more work to do */ _main_thread->base.user_options &= ~K_ESSENTIAL; } void __weak main(void) { /* NOP default main() if the application does not provide one. */ } #if defined(CONFIG_MULTITHREADING) static void init_idle_thread(struct k_thread *thr, k_thread_stack_t *stack) { #ifdef CONFIG_SMP thr->base.is_idle = 1; #endif _setup_new_thread(thr, stack, IDLE_STACK_SIZE, idle, NULL, NULL, NULL, K_LOWEST_THREAD_PRIO, K_ESSENTIAL); _mark_thread_as_started(thr); } #endif /** * * @brief Initializes kernel data structures * * This routine initializes various kernel data structures, including * the init and idle threads and any architecture-specific initialization. * * Note that all fields of "_kernel" are set to zero on entry, which may * be all the initialization many of them require. * * @return N/A */ #ifdef CONFIG_MULTITHREADING static void prepare_multithreading(struct k_thread *dummy_thread) { #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN ARG_UNUSED(dummy_thread); #else /* * Initialize the current execution thread to permit a level of * debugging output if an exception should happen during kernel * initialization. However, don't waste effort initializing the * fields of the dummy thread beyond those needed to identify it as a * dummy thread. */ _current = dummy_thread; dummy_thread->base.user_options = K_ESSENTIAL; dummy_thread->base.thread_state = _THREAD_DUMMY; #ifdef CONFIG_THREAD_STACK_INFO dummy_thread->stack_info.start = 0; dummy_thread->stack_info.size = 0; #endif #ifdef CONFIG_USERSPACE dummy_thread->mem_domain_info.mem_domain = 0; #endif #endif /* _kernel.ready_q is all zeroes */ _sched_init(); #ifndef CONFIG_SMP /* * prime the cache with the main thread since: * * - the cache can never be NULL * - the main thread will be the one to run first * - no other thread is initialized yet and thus their priority fields * contain garbage, which would prevent the cache loading algorithm * to work as intended */ _ready_q.cache = _main_thread; #endif _setup_new_thread(_main_thread, _main_stack, MAIN_STACK_SIZE, bg_thread_main, NULL, NULL, NULL, CONFIG_MAIN_THREAD_PRIORITY, K_ESSENTIAL); sys_trace_thread_create(_main_thread); _mark_thread_as_started(_main_thread); _ready_thread(_main_thread); #ifdef CONFIG_MULTITHREADING init_idle_thread(_idle_thread, _idle_stack); _kernel.cpus[0].idle_thread = _idle_thread; sys_trace_thread_create(_idle_thread); #endif #if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 1 init_idle_thread(_idle_thread1, _idle_stack1); _kernel.cpus[1].idle_thread = _idle_thread1; _kernel.cpus[1].id = 1; _kernel.cpus[1].irq_stack = K_THREAD_STACK_BUFFER(_interrupt_stack1) + CONFIG_ISR_STACK_SIZE; #endif #if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 2 init_idle_thread(_idle_thread2, _idle_stack2); _kernel.cpus[2].idle_thread = _idle_thread2; _kernel.cpus[2].id = 2; _kernel.cpus[2].irq_stack = K_THREAD_STACK_BUFFER(_interrupt_stack2) + CONFIG_ISR_STACK_SIZE; #endif #if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 3 init_idle_thread(_idle_thread3, _idle_stack3); _kernel.cpus[3].idle_thread = _idle_thread3; _kernel.cpus[3].id = 3; _kernel.cpus[3].irq_stack = K_THREAD_STACK_BUFFER(_interrupt_stack3) + CONFIG_ISR_STACK_SIZE; #endif initialize_timeouts(); } static void switch_to_main_thread(void) { #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN _arch_switch_to_main_thread(_main_thread, _main_stack, MAIN_STACK_SIZE, bg_thread_main); #else /* * Context switch to main task (entry function is _main()): the * current fake thread is not on a wait queue or ready queue, so it * will never be rescheduled in. */ (void)_Swap(irq_lock()); #endif } #endif /* CONFIG_MULTITHREDING */ u32_t z_early_boot_rand32_get(void) { #ifdef CONFIG_ENTROPY_HAS_DRIVER struct device *entropy = device_get_binding(CONFIG_ENTROPY_NAME); int rc; u32_t retval; if (entropy == NULL) { goto sys_rand32_fallback; } /* Try to see if driver provides an ISR-specific API */ rc = entropy_get_entropy_isr(entropy, (u8_t *)&retval, sizeof(retval), ENTROPY_BUSYWAIT); if (rc == -ENOTSUP) { /* Driver does not provide an ISR-specific API, assume it can * be called from ISR context */ rc = entropy_get_entropy(entropy, (u8_t *)&retval, sizeof(retval)); } if (rc >= 0) { return retval; } /* Fall through to fallback */ sys_rand32_fallback: #endif /* FIXME: this assumes sys_rand32_get() won't use any synchronization * primitive, like semaphores or mutexes. It's too early in the boot * process to use any of them. Ideally, only the path where entropy * devices are available should be built, this is only a fallback for * those devices without a HWRNG entropy driver. */ return sys_rand32_get(); } #ifdef CONFIG_STACK_CANARIES extern uintptr_t __stack_chk_guard; #endif /* CONFIG_STACK_CANARIES */ /** * * @brief Initialize kernel * * This routine is invoked when the system is ready to run C code. The * processor must be running in 32-bit mode, and the BSS must have been * cleared/zeroed. * * @return Does not return */ FUNC_NORETURN void _Cstart(void) { #ifdef CONFIG_MULTITHREADING #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN struct k_thread *dummy_thread = NULL; #else /* Normally, kernel objects are not allowed on the stack, special case * here since this is just being used to bootstrap the first _Swap() */ char dummy_thread_memory[sizeof(struct k_thread)]; struct k_thread *dummy_thread = (struct k_thread *)&dummy_thread_memory; (void)memset(dummy_thread_memory, 0, sizeof(dummy_thread_memory)); #endif #endif /* * The interrupt library needs to be initialized early since a series * of handlers are installed into the interrupt table to catch * spurious interrupts. This must be performed before other kernel * subsystems install bonafide handlers, or before hardware device * drivers are initialized. */ _IntLibInit(); if (IS_ENABLED(CONFIG_LOG)) { log_core_init(); } /* perform any architecture-specific initialization */ kernel_arch_init(); /* perform basic hardware initialization */ _sys_device_do_config_level(_SYS_INIT_LEVEL_PRE_KERNEL_1); _sys_device_do_config_level(_SYS_INIT_LEVEL_PRE_KERNEL_2); #ifdef CONFIG_STACK_CANARIES __stack_chk_guard = z_early_boot_rand32_get(); #endif #ifdef CONFIG_MULTITHREADING prepare_multithreading(dummy_thread); switch_to_main_thread(); #else bg_thread_main(NULL, NULL, NULL); irq_lock(); while (true) { } #endif /* * Compiler can't tell that the above routines won't return and issues * a warning unless we explicitly tell it that control never gets this * far. */ CODE_UNREACHABLE; }