/* * Copyright (c) 2019, Texas Instruments Incorporated * * SPDX-License-Identifier: Apache-2.0 */ /* * TI SimpleLink CC13X2/CC26X2 RTC-based system timer * * This system timer implementation supports both tickless and ticking modes. * RTC counts continually in 64-bit mode and timeouts are * scheduled using the RTC comparator. An interrupt is triggered whenever * the comparator value set is reached. */ #include #include #include #include #include #include #include #define RTC_COUNTS_PER_SEC 0x100000000ULL /* Number of counts per rtc timer cycle */ #define RTC_COUNTS_PER_CYCLE (RTC_COUNTS_PER_SEC / \ sys_clock_hw_cycles_per_sec()) /* Number of counts per system clock tick */ #define RTC_COUNTS_PER_TICK (RTC_COUNTS_PER_SEC / \ CONFIG_SYS_CLOCK_TICKS_PER_SEC) /* Number of RTC cycles per system clock tick */ #define CYCLES_PER_TICK (sys_clock_hw_cycles_per_sec() / \ CONFIG_SYS_CLOCK_TICKS_PER_SEC) /* * Maximum number of ticks. */ #define MAX_TICKS (0x7FFFFFFFFFFFULL / RTC_COUNTS_PER_TICK) /* * Due to the nature of clock synchronization, the comparator cannot be set * to a value that is too close to the current time. This constant defines * a safe threshold for the comparator. */ #define COMPARE_MARGIN 6 /* RTC count of the last announce call, rounded down to tick boundary. */ static volatile u64_t rtc_last; #ifdef CONFIG_TICKLESS_KERNEL static struct k_spinlock lock; #else static u64_t nextThreshold = RTC_COUNTS_PER_TICK; #endif /* CONFIG_TICKLESS_KERNEL */ static void setThreshold(u32_t next) { u32_t now; unsigned int key; key = irq_lock(); /* get the current RTC count corresponding to compare window */ now = AONRTCCurrentCompareValueGet(); /* if next is too soon, set at least one RTC tick in future */ /* assume next never be more than half the maximum 32 bit count value */ if ((next - now) > (u32_t)0x80000000) { /* now is past next */ next = now + COMPARE_MARGIN; } else if ((now + COMPARE_MARGIN - next) < (u32_t)0x80000000) { if (next < now + COMPARE_MARGIN) { next = now + COMPARE_MARGIN; } } /* set next compare threshold in RTC */ AONRTCCompareValueSet(AON_RTC_CH0, next); irq_unlock(key); } void rtc_isr(void *arg) { #ifndef CONFIG_TICKLESS_KERNEL u64_t newThreshold; u32_t next; #else u64_t ticks, currCount; #endif ARG_UNUSED(arg); AONRTCEventClear(AON_RTC_CH0); #ifdef CONFIG_TICKLESS_KERNEL k_spinlock_key_t key = k_spin_lock(&lock); currCount = (u64_t)AONRTCCurrent64BitValueGet(); ticks = (currCount - rtc_last) / RTC_COUNTS_PER_TICK; rtc_last += ticks * RTC_COUNTS_PER_TICK; k_spin_unlock(&lock, key); z_clock_announce(ticks); #else /* !CONFIG_TICKLESS_KERNEL */ /* calculate new 64-bit RTC count for next interrupt */ newThreshold = nextThreshold + RTC_COUNTS_PER_TICK; next = (u32_t)((u64_t)newThreshold >> 16); setThreshold(next); nextThreshold = newThreshold; rtc_last += RTC_COUNTS_PER_TICK; z_clock_announce(1); #endif /* CONFIG_TICKLESS_KERNEL */ } static void initDevice(void) { AONRTCDisable(); AONRTCReset(); HWREG(AON_RTC_BASE + AON_RTC_O_SYNC) = 1; /* read sync register to complete reset */ HWREG(AON_RTC_BASE + AON_RTC_O_SYNC); AONRTCEventClear(AON_RTC_CH0); IntPendClear(INT_AON_RTC_COMB); HWREG(AON_RTC_BASE + AON_RTC_O_SYNC); } static void startDevice(void) { u32_t compare; u64_t period; unsigned int key; key = irq_lock(); /* reset timer */ AONRTCReset(); AONRTCEventClear(AON_RTC_CH0); IntPendClear(INT_AON_RTC_COMB); /* * set the compare register to one period. * For a very small period round up to interrupt upon 4th tick in * compare register */ period = RTC_COUNTS_PER_TICK; if (period < 0x40000) { compare = 0x4; /* 4 * 15.5us ~= 62us */ } else { /* else, interrupt on first period expiration */ compare = period >> 16; } /* set the compare value at the RTC */ AONRTCCompareValueSet(AON_RTC_CH0, compare); /* enable compare channel 0 */ AONEventMcuWakeUpSet(AON_EVENT_MCU_WU0, AON_EVENT_RTC0); AONRTCChannelEnable(AON_RTC_CH0); AONRTCCombinedEventConfig(AON_RTC_CH0); /* start timer */ AONRTCEnable(); irq_unlock(key); } int z_clock_driver_init(struct device *device) { ARG_UNUSED(device); rtc_last = 0U; initDevice(); startDevice(); /* Enable RTC interrupt. */ IRQ_CONNECT(DT_INST_0_TI_CC13XX_CC26XX_RTC_IRQ_0, DT_INST_0_TI_CC13XX_CC26XX_RTC_IRQ_0_PRIORITY, rtc_isr, 0, 0); irq_enable(DT_INST_0_TI_CC13XX_CC26XX_RTC_IRQ_0); return 0; } void z_clock_set_timeout(s32_t ticks, bool idle) { ARG_UNUSED(idle); #ifdef CONFIG_TICKLESS_KERNEL ticks = (ticks == K_FOREVER) ? MAX_TICKS : ticks; ticks = MAX(MIN(ticks - 1, (s32_t) MAX_TICKS), 0); k_spinlock_key_t key = k_spin_lock(&lock); /* Compute number of RTC cycles until the next timeout. */ u64_t count = AONRTCCurrent64BitValueGet(); u64_t timeout = ticks * RTC_COUNTS_PER_TICK + (count - rtc_last); /* Round to the nearest tick boundary. */ timeout = (timeout + RTC_COUNTS_PER_TICK - 1) / RTC_COUNTS_PER_TICK * RTC_COUNTS_PER_TICK; timeout += rtc_last; /* Set the comparator */ setThreshold(timeout >> 16); k_spin_unlock(&lock, key); #endif /* CONFIG_TICKLESS_KERNEL */ } u32_t z_clock_elapsed(void) { u32_t ret = (AONRTCCurrent64BitValueGet() - rtc_last) / RTC_COUNTS_PER_TICK; return ret; } u32_t z_timer_cycle_get_32(void) { return (AONRTCCurrent64BitValueGet() / RTC_COUNTS_PER_CYCLE) & 0xFFFFFFFF; }