/* * Copyright 2023 Google LLC * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT analog_axis #include #include #include #include #include #include #include #include #include #include #include LOG_MODULE_REGISTER(analog_axis, CONFIG_INPUT_LOG_LEVEL); struct analog_axis_channel_config { struct adc_dt_spec adc; int16_t out_min; int16_t out_max; uint16_t axis; bool invert_input; bool invert_output; }; struct analog_axis_channel_data { int last_out; }; struct analog_axis_config { uint32_t poll_period_ms; const struct analog_axis_channel_config *channel_cfg; struct analog_axis_channel_data *channel_data; struct analog_axis_calibration *calibration; const uint8_t num_channels; }; struct analog_axis_data { struct k_sem cal_lock; analog_axis_raw_data_t raw_data_cb; struct k_timer timer; struct k_thread thread; K_KERNEL_STACK_MEMBER(thread_stack, CONFIG_INPUT_ANALOG_AXIS_THREAD_STACK_SIZE); #ifdef CONFIG_PM_DEVICE atomic_t suspended; struct k_sem wakeup; #endif }; int analog_axis_num_axes(const struct device *dev) { const struct analog_axis_config *cfg = dev->config; return cfg->num_channels; } int analog_axis_calibration_get(const struct device *dev, int channel, struct analog_axis_calibration *out_cal) { const struct analog_axis_config *cfg = dev->config; struct analog_axis_data *data = dev->data; struct analog_axis_calibration *cal = &cfg->calibration[channel]; if (channel >= cfg->num_channels) { return -EINVAL; } k_sem_take(&data->cal_lock, K_FOREVER); memcpy(out_cal, cal, sizeof(struct analog_axis_calibration)); k_sem_give(&data->cal_lock); return 0; } void analog_axis_set_raw_data_cb(const struct device *dev, analog_axis_raw_data_t cb) { struct analog_axis_data *data = dev->data; k_sem_take(&data->cal_lock, K_FOREVER); data->raw_data_cb = cb; k_sem_give(&data->cal_lock); } int analog_axis_calibration_set(const struct device *dev, int channel, struct analog_axis_calibration *new_cal) { const struct analog_axis_config *cfg = dev->config; struct analog_axis_data *data = dev->data; struct analog_axis_calibration *cal = &cfg->calibration[channel]; if (channel >= cfg->num_channels) { return -EINVAL; } k_sem_take(&data->cal_lock, K_FOREVER); memcpy(cal, new_cal, sizeof(struct analog_axis_calibration)); k_sem_give(&data->cal_lock); return 0; } static int32_t analog_axis_out_deadzone(const struct device *dev, int channel, int32_t raw_val) { const struct analog_axis_config *cfg = dev->config; const struct analog_axis_channel_config *axis_cfg = &cfg->channel_cfg[channel]; struct analog_axis_calibration *cal = &cfg->calibration[channel]; int16_t in_range = cal->in_max - cal->in_min; int16_t out_range = axis_cfg->out_max - axis_cfg->out_min; int16_t in_mid = DIV_ROUND_CLOSEST(cal->in_min + cal->in_max, 2); int16_t in_min = cal->in_min; if (abs(raw_val - in_mid) < cal->in_deadzone) { return DIV_ROUND_CLOSEST(axis_cfg->out_max + axis_cfg->out_min, 2); } in_range -= cal->in_deadzone * 2; in_min += cal->in_deadzone; if (raw_val < in_mid) { raw_val += cal->in_deadzone; } else { raw_val -= cal->in_deadzone; } return DIV_ROUND_CLOSEST((raw_val - in_min) * out_range, in_range) + axis_cfg->out_min; } static int32_t analog_axis_out_linear(const struct device *dev, int channel, int32_t raw_val) { const struct analog_axis_config *cfg = dev->config; const struct analog_axis_channel_config *axis_cfg = &cfg->channel_cfg[channel]; struct analog_axis_calibration *cal = &cfg->calibration[channel]; int16_t in_range = cal->in_max - cal->in_min; int16_t out_range = axis_cfg->out_max - axis_cfg->out_min; return DIV_ROUND_CLOSEST((raw_val - cal->in_min) * out_range, in_range) + axis_cfg->out_min; } static void analog_axis_loop(const struct device *dev) { const struct analog_axis_config *cfg = dev->config; struct analog_axis_data *data = dev->data; int16_t bufs[cfg->num_channels]; int32_t out; struct adc_sequence sequence = { .buffer = bufs, .buffer_size = sizeof(bufs), }; const struct analog_axis_channel_config *axis_cfg_0 = &cfg->channel_cfg[0]; int err; int i; adc_sequence_init_dt(&axis_cfg_0->adc, &sequence); for (i = 0; i < cfg->num_channels; i++) { const struct analog_axis_channel_config *axis_cfg = &cfg->channel_cfg[i]; sequence.channels |= BIT(axis_cfg->adc.channel_id); } err = adc_read(axis_cfg_0->adc.dev, &sequence); if (err < 0) { LOG_ERR("Could not read (%d)", err); return; } k_sem_take(&data->cal_lock, K_FOREVER); for (i = 0; i < cfg->num_channels; i++) { const struct analog_axis_channel_config *axis_cfg = &cfg->channel_cfg[i]; struct analog_axis_channel_data *axis_data = &cfg->channel_data[i]; struct analog_axis_calibration *cal = &cfg->calibration[i]; int32_t raw_val = bufs[i]; if (axis_cfg->invert_input) { raw_val *= -1; } if (data->raw_data_cb != NULL) { data->raw_data_cb(dev, i, raw_val); } LOG_DBG("%s: ch %d: raw_val: %d", dev->name, i, raw_val); if (cal->in_deadzone > 0) { out = analog_axis_out_deadzone(dev, i, raw_val); } else { out = analog_axis_out_linear(dev, i, raw_val); } out = CLAMP(out, axis_cfg->out_min, axis_cfg->out_max); if (axis_cfg->invert_output) { out = axis_cfg->out_max - out; } if (axis_data->last_out != out) { input_report_abs(dev, axis_cfg->axis, out, true, K_FOREVER); } axis_data->last_out = out; } k_sem_give(&data->cal_lock); } static void analog_axis_thread(void *arg1, void *arg2, void *arg3) { const struct device *dev = arg1; const struct analog_axis_config *cfg = dev->config; struct analog_axis_data *data = dev->data; int err; int i; for (i = 0; i < cfg->num_channels; i++) { const struct analog_axis_channel_config *axis_cfg = &cfg->channel_cfg[i]; if (!adc_is_ready_dt(&axis_cfg->adc)) { LOG_ERR("ADC controller device not ready"); return; } err = adc_channel_setup_dt(&axis_cfg->adc); if (err < 0) { LOG_ERR("Could not setup channel #%d (%d)", i, err); return; } } while (true) { #ifdef CONFIG_PM_DEVICE if (atomic_get(&data->suspended) == 1) { k_sem_take(&data->wakeup, K_FOREVER); } #endif analog_axis_loop(dev); k_timer_status_sync(&data->timer); } } static int analog_axis_init(const struct device *dev) { struct analog_axis_data *data = dev->data; k_tid_t tid; k_sem_init(&data->cal_lock, 1, 1); k_timer_init(&data->timer, NULL, NULL); #ifdef CONFIG_PM_DEVICE k_sem_init(&data->wakeup, 0, 1); #endif tid = k_thread_create(&data->thread, data->thread_stack, K_KERNEL_STACK_SIZEOF(data->thread_stack), analog_axis_thread, (void *)dev, NULL, NULL, CONFIG_INPUT_ANALOG_AXIS_THREAD_PRIORITY, 0, K_NO_WAIT); if (!tid) { LOG_ERR("thread creation failed"); return -ENODEV; } k_thread_name_set(&data->thread, dev->name); #ifndef CONFIG_PM_DEVICE_RUNTIME const struct analog_axis_config *cfg = dev->config; k_timer_start(&data->timer, K_MSEC(cfg->poll_period_ms), K_MSEC(cfg->poll_period_ms)); #else int ret; atomic_set(&data->suspended, 1); pm_device_init_suspended(dev); ret = pm_device_runtime_enable(dev); if (ret < 0) { LOG_ERR("Failed to enable runtime power management"); return ret; } #endif return 0; } #ifdef CONFIG_PM_DEVICE static int analog_axis_pm_action(const struct device *dev, enum pm_device_action action) { const struct analog_axis_config *cfg = dev->config; struct analog_axis_data *data = dev->data; switch (action) { case PM_DEVICE_ACTION_SUSPEND: atomic_set(&data->suspended, 1); k_timer_stop(&data->timer); break; case PM_DEVICE_ACTION_RESUME: k_timer_start(&data->timer, K_MSEC(cfg->poll_period_ms), K_MSEC(cfg->poll_period_ms)); atomic_set(&data->suspended, 0); k_sem_give(&data->wakeup); break; default: return -ENOTSUP; } return 0; } #endif #define ANALOG_AXIS_CHANNEL_CFG_DEF(node_id) \ { \ .adc = ADC_DT_SPEC_GET(node_id), \ .out_min = (int16_t)DT_PROP(node_id, out_min), \ .out_max = (int16_t)DT_PROP(node_id, out_max), \ .axis = DT_PROP(node_id, zephyr_axis), \ .invert_input = DT_PROP(node_id, invert_input), \ .invert_output = DT_PROP(node_id, invert_output), \ } #define ANALOG_AXIS_CHANNEL_CAL_DEF(node_id) \ { \ .in_min = (int16_t)DT_PROP(node_id, in_min), \ .in_max = (int16_t)DT_PROP(node_id, in_max), \ .in_deadzone = DT_PROP(node_id, in_deadzone), \ } #define ANALOG_AXIS_INIT(inst) \ static const struct analog_axis_channel_config analog_axis_channel_cfg_##inst[] = { \ DT_INST_FOREACH_CHILD_STATUS_OKAY_SEP(inst, ANALOG_AXIS_CHANNEL_CFG_DEF, (,)) \ }; \ \ static struct analog_axis_channel_data \ analog_axis_channel_data_##inst[ARRAY_SIZE(analog_axis_channel_cfg_##inst)]; \ \ static struct analog_axis_calibration \ analog_axis_calibration_##inst[ARRAY_SIZE(analog_axis_channel_cfg_##inst)] = { \ DT_INST_FOREACH_CHILD_STATUS_OKAY_SEP( \ inst, ANALOG_AXIS_CHANNEL_CAL_DEF, (,)) \ }; \ \ static const struct analog_axis_config analog_axis_cfg_##inst = { \ .poll_period_ms = DT_INST_PROP(inst, poll_period_ms), \ .channel_cfg = analog_axis_channel_cfg_##inst, \ .channel_data = analog_axis_channel_data_##inst, \ .calibration = analog_axis_calibration_##inst, \ .num_channels = ARRAY_SIZE(analog_axis_channel_cfg_##inst), \ }; \ \ static struct analog_axis_data analog_axis_data_##inst; \ \ PM_DEVICE_DT_INST_DEFINE(inst, analog_axis_pm_action); \ \ DEVICE_DT_INST_DEFINE(inst, analog_axis_init, PM_DEVICE_DT_INST_GET(inst), \ &analog_axis_data_##inst, &analog_axis_cfg_##inst, \ POST_KERNEL, CONFIG_INPUT_INIT_PRIORITY, NULL); DT_INST_FOREACH_STATUS_OKAY(ANALOG_AXIS_INIT)