/* * Copyright (c) 2020 Intel Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT qemu_ivshmem #define LOG_LEVEL CONFIG_IVSHMEM_LOG_LEVEL #include LOG_MODULE_REGISTER(ivshmem); #include #include #include #include #include #include #include "virt_ivshmem.h" #ifdef CONFIG_IVSHMEM_DOORBELL static void ivshmem_doorbell(const void *arg) { const struct ivshmem_param *param = arg; LOG_DBG("Interrupt received on vector %u", param->vector); if (param->signal != NULL) { k_poll_signal_raise(param->signal, param->vector); } } static bool ivshmem_configure_msi_x_interrupts(const struct device *dev) { #if defined(CONFIG_PCIE_MSI_X) && defined(CONFIG_PCIE_MSI_MULTI_VECTOR) struct ivshmem *data = dev->data; bool ret = false; uint8_t n_vectors; uint32_t key; int i; key = irq_lock(); n_vectors = pcie_msi_vectors_allocate(data->pcie->bdf, CONFIG_IVSHMEM_INT_PRIORITY, data->vectors, CONFIG_IVSHMEM_MSI_X_VECTORS); if (n_vectors == 0) { LOG_ERR("Could not allocate %u MSI-X vectors", CONFIG_IVSHMEM_MSI_X_VECTORS); goto out; } LOG_DBG("Allocated %u vectors", n_vectors); for (i = 0; i < n_vectors; i++) { data->params[i].dev = dev; data->params[i].vector = i; if (!pcie_msi_vector_connect(data->pcie->bdf, &data->vectors[i], ivshmem_doorbell, &data->params[i], 0)) { LOG_ERR("Failed to connect MSI-X vector %u", i); goto out; } } LOG_INF("%u MSI-X Vectors connected", n_vectors); if (!pcie_msi_enable(data->pcie->bdf, data->vectors, n_vectors, 0)) { LOG_ERR("Could not enable MSI-X"); goto out; } data->n_vectors = n_vectors; ret = true; LOG_DBG("MSI-X configured"); out: irq_unlock(key); return ret; #else return false; #endif } #ifdef CONFIG_IVSHMEM_V2 static bool ivshmem_configure_int_x_interrupts(const struct device *dev) { struct ivshmem *data = dev->data; const struct ivshmem_cfg *cfg = dev->config; uint32_t cfg_int = pcie_conf_read(data->pcie->bdf, PCIE_CONF_INTR); uint32_t cfg_intx_pin = PCIE_CONF_INTR_PIN(cfg_int); if (!IN_RANGE(cfg_intx_pin, PCIE_INTX_PIN_MIN, PCIE_INTX_PIN_MAX)) { LOG_ERR("Invalid INTx pin %u", cfg_intx_pin); return false; } /* Ensure INTx is enabled */ pcie_set_cmd(data->pcie->bdf, PCIE_CONF_CMDSTAT_INTX_DISABLE, false); const struct intx_info *intx = &cfg->intx_info[cfg_intx_pin - 1]; data->params[0].dev = dev; data->params[0].vector = 0; LOG_INF("Enabling INTx IRQ %u (pin %u)", intx->irq, cfg_intx_pin); if (intx->irq == INTX_IRQ_UNUSED || !pcie_connect_dynamic_irq( data->pcie->bdf, intx->irq, intx->priority, ivshmem_doorbell, &data->params[0], intx->flags)) { LOG_ERR("Failed to connect INTx ISR %u", cfg_intx_pin); return false; } data->n_vectors = 1; pcie_irq_enable(data->pcie->bdf, intx->irq); return true; } #endif /* CONFIG_IVSHMEM_V2 */ static void register_signal(const struct device *dev, struct k_poll_signal *signal, uint16_t vector) { struct ivshmem *data = dev->data; data->params[vector].signal = signal; } #else #define ivshmem_configure_msi_x_interrupts(...) true #define ivshmem_configure_int_x_interrupts(...) true #define register_signal(...) #endif /* CONFIG_IVSHMEM_DOORBELL */ static const struct ivshmem_reg no_reg; __maybe_unused static uint64_t pcie_conf_read_u64(pcie_bdf_t bdf, unsigned int reg) { uint64_t lo = pcie_conf_read(bdf, reg); uint64_t hi = pcie_conf_read(bdf, reg + 1); return hi << 32 | lo; } static bool ivshmem_configure(const struct device *dev) { struct ivshmem *data = dev->data; struct pcie_bar mbar_regs, mbar_msi_x, mbar_shmem; if (!pcie_get_mbar(data->pcie->bdf, IVSHMEM_PCIE_REG_BAR_IDX, &mbar_regs)) { if (IS_ENABLED(CONFIG_IVSHMEM_DOORBELL) IF_ENABLED(CONFIG_IVSHMEM_V2, (|| data->ivshmem_v2))) { LOG_ERR("ivshmem regs bar not found"); return false; } LOG_INF("ivshmem regs bar not found"); device_map(DEVICE_MMIO_RAM_PTR(dev), (uintptr_t)&no_reg, sizeof(struct ivshmem_reg), K_MEM_CACHE_NONE); } else { pcie_set_cmd(data->pcie->bdf, PCIE_CONF_CMDSTAT_MEM | PCIE_CONF_CMDSTAT_MASTER, true); device_map(DEVICE_MMIO_RAM_PTR(dev), mbar_regs.phys_addr, mbar_regs.size, K_MEM_CACHE_NONE); } bool msi_x_bar_present = pcie_get_mbar( data->pcie->bdf, IVSHMEM_PCIE_MSI_X_BAR_IDX, &mbar_msi_x); bool shmem_bar_present = pcie_get_mbar( data->pcie->bdf, IVSHMEM_PCIE_SHMEM_BAR_IDX, &mbar_shmem); LOG_INF("MSI-X bar present: %s", msi_x_bar_present ? "yes" : "no"); LOG_INF("SHMEM bar present: %s", shmem_bar_present ? "yes" : "no"); uintptr_t shmem_phys_addr = mbar_shmem.phys_addr; #ifdef CONFIG_IVSHMEM_V2 if (data->ivshmem_v2) { if (mbar_regs.size < sizeof(struct ivshmem_v2_reg)) { LOG_ERR("Invalid ivshmem regs size %zu", mbar_regs.size); return false; } volatile struct ivshmem_v2_reg *regs = (volatile struct ivshmem_v2_reg *)DEVICE_MMIO_GET(dev); data->max_peers = regs->max_peers; if (!IN_RANGE(data->max_peers, 2, CONFIG_IVSHMEM_V2_MAX_PEERS)) { LOG_ERR("Invalid max peers %u", data->max_peers); return false; } uint32_t vendor_cap = pcie_get_cap(data->pcie->bdf, PCI_CAP_ID_VNDR); uint32_t cap_pos; if (!shmem_bar_present) { cap_pos = vendor_cap + IVSHMEM_CFG_ADDRESS / 4; shmem_phys_addr = pcie_conf_read_u64(data->pcie->bdf, cap_pos); } /* State table R/O */ cap_pos = vendor_cap + IVSHMEM_CFG_STATE_TAB_SZ / 4; size_t state_table_size = pcie_conf_read(data->pcie->bdf, cap_pos); LOG_INF("State table size 0x%zX", state_table_size); if (state_table_size < sizeof(uint32_t) * data->max_peers) { LOG_ERR("Invalid state table size %zu", state_table_size); return false; } k_mem_map_phys_bare((uint8_t **)&data->state_table_shmem, shmem_phys_addr, state_table_size, K_MEM_CACHE_WB | K_MEM_PERM_USER); /* R/W section (optional) */ cap_pos = vendor_cap + IVSHMEM_CFG_RW_SECTION_SZ / 4; data->rw_section_size = pcie_conf_read_u64(data->pcie->bdf, cap_pos); size_t rw_section_offset = state_table_size; LOG_INF("RW section size 0x%zX", data->rw_section_size); if (data->rw_section_size > 0) { k_mem_map_phys_bare((uint8_t **)&data->rw_section_shmem, shmem_phys_addr + rw_section_offset, data->rw_section_size, K_MEM_CACHE_WB | K_MEM_PERM_RW | K_MEM_PERM_USER); } /* Output sections */ cap_pos = vendor_cap + IVSHMEM_CFG_OUTPUT_SECTION_SZ / 4; data->output_section_size = pcie_conf_read_u64(data->pcie->bdf, cap_pos); size_t output_section_offset = rw_section_offset + data->rw_section_size; LOG_INF("Output section size 0x%zX", data->output_section_size); for (uint32_t i = 0; i < data->max_peers; i++) { uintptr_t phys_addr = shmem_phys_addr + output_section_offset + (data->output_section_size * i); uint32_t flags = K_MEM_CACHE_WB | K_MEM_PERM_USER; /* Only your own output section is R/W */ if (i == regs->id) { flags |= K_MEM_PERM_RW; } k_mem_map_phys_bare((uint8_t **)&data->output_section_shmem[i], phys_addr, data->output_section_size, flags); } data->size = output_section_offset + data->output_section_size * data->max_peers; /* Ensure one-shot ISR mode is disabled */ cap_pos = vendor_cap + IVSHMEM_CFG_PRIV_CNTL / 4; uint32_t cfg_priv_cntl = pcie_conf_read(data->pcie->bdf, cap_pos); cfg_priv_cntl &= ~(IVSHMEM_PRIV_CNTL_ONESHOT_INT << ((IVSHMEM_CFG_PRIV_CNTL % 4) * 8)); pcie_conf_write(data->pcie->bdf, cap_pos, cfg_priv_cntl); } else #endif /* CONFIG_IVSHMEM_V2 */ { if (!shmem_bar_present) { LOG_ERR("ivshmem mem bar not found"); return false; } data->size = mbar_shmem.size; k_mem_map_phys_bare((uint8_t **)&data->shmem, shmem_phys_addr, data->size, K_MEM_CACHE_WB | K_MEM_PERM_RW | K_MEM_PERM_USER); } if (msi_x_bar_present) { if (!ivshmem_configure_msi_x_interrupts(dev)) { LOG_ERR("MSI-X init failed"); return false; } } #ifdef CONFIG_IVSHMEM_V2 else if (data->ivshmem_v2) { if (!ivshmem_configure_int_x_interrupts(dev)) { LOG_ERR("INTx init failed"); return false; } } #endif LOG_INF("ivshmem configured:"); LOG_INF("- Registers at 0x%lX (mapped to 0x%lX)", mbar_regs.phys_addr, DEVICE_MMIO_GET(dev)); LOG_INF("- Shared memory of 0x%zX bytes at 0x%lX (mapped to 0x%lX)", data->size, shmem_phys_addr, data->shmem); return true; } static size_t ivshmem_api_get_mem(const struct device *dev, uintptr_t *memmap) { struct ivshmem *data = dev->data; #ifdef CONFIG_IVSHMEM_V2 if (data->ivshmem_v2) { *memmap = 0; return 0; } #endif *memmap = data->shmem; return data->size; } static uint32_t ivshmem_api_get_id(const struct device *dev) { uint32_t id; #ifdef CONFIG_IVSHMEM_V2 struct ivshmem *data = dev->data; if (data->ivshmem_v2) { volatile struct ivshmem_v2_reg *regs = (volatile struct ivshmem_v2_reg *) DEVICE_MMIO_GET(dev); id = regs->id; } else #endif { volatile struct ivshmem_reg *regs = (volatile struct ivshmem_reg *) DEVICE_MMIO_GET(dev); id = regs->iv_position; } return id; } static uint16_t ivshmem_api_get_vectors(const struct device *dev) { #if CONFIG_IVSHMEM_DOORBELL struct ivshmem *data = dev->data; return data->n_vectors; #else return 0; #endif } static int ivshmem_api_int_peer(const struct device *dev, uint32_t peer_id, uint16_t vector) { #if CONFIG_IVSHMEM_DOORBELL struct ivshmem *data = dev->data; volatile uint32_t *doorbell_reg; uint32_t doorbell = IVSHMEM_GEN_DOORBELL(peer_id, vector); if (vector >= data->n_vectors) { return -EINVAL; } #ifdef CONFIG_IVSHMEM_V2 if (data->ivshmem_v2 && peer_id >= data->max_peers) { return -EINVAL; } if (data->ivshmem_v2) { volatile struct ivshmem_v2_reg *regs = (volatile struct ivshmem_v2_reg *) DEVICE_MMIO_GET(dev); doorbell_reg = ®s->doorbell; } else #endif { volatile struct ivshmem_reg *regs = (volatile struct ivshmem_reg *) DEVICE_MMIO_GET(dev); doorbell_reg = ®s->doorbell; } *doorbell_reg = doorbell; return 0; #else return -ENOSYS; #endif } static int ivshmem_api_register_handler(const struct device *dev, struct k_poll_signal *signal, uint16_t vector) { #if CONFIG_IVSHMEM_DOORBELL struct ivshmem *data = dev->data; if (vector >= data->n_vectors) { return -EINVAL; } register_signal(dev, signal, vector); return 0; #else return -ENOSYS; #endif } #ifdef CONFIG_IVSHMEM_V2 static size_t ivshmem_api_get_rw_mem_section(const struct device *dev, uintptr_t *memmap) { struct ivshmem *data = dev->data; if (!data->ivshmem_v2) { *memmap = 0; return 0; } *memmap = data->rw_section_shmem; return data->rw_section_size; } static size_t ivshmem_api_get_output_mem_section(const struct device *dev, uint32_t peer_id, uintptr_t *memmap) { struct ivshmem *data = dev->data; if (!data->ivshmem_v2 || peer_id >= data->max_peers) { *memmap = 0; return 0; } *memmap = data->output_section_shmem[peer_id]; return data->output_section_size; } static uint32_t ivshmem_api_get_state(const struct device *dev, uint32_t peer_id) { struct ivshmem *data = dev->data; if (!data->ivshmem_v2 || peer_id >= data->max_peers) { return 0; } const volatile uint32_t *state_table = (const volatile uint32_t *)data->state_table_shmem; return state_table[peer_id]; } static int ivshmem_api_set_state(const struct device *dev, uint32_t state) { struct ivshmem *data = dev->data; if (!data->ivshmem_v2) { return -ENOSYS; } volatile struct ivshmem_v2_reg *regs = (volatile struct ivshmem_v2_reg *) DEVICE_MMIO_GET(dev); regs->state = state; return 0; } static uint32_t ivshmem_api_get_max_peers(const struct device *dev) { struct ivshmem *data = dev->data; if (!data->ivshmem_v2) { return 0; } return data->max_peers; } static uint16_t ivshmem_api_get_protocol(const struct device *dev) { struct ivshmem *data = dev->data; if (!data->ivshmem_v2) { return 0; } uint16_t protocol = (data->pcie->class_rev >> 8) & 0xFFFF; return protocol; } static int ivshmem_api_enable_interrupts(const struct device *dev, bool enable) { struct ivshmem *data = dev->data; if (!data->ivshmem_v2) { return -ENOSYS; } volatile struct ivshmem_v2_reg *regs = (volatile struct ivshmem_v2_reg *) DEVICE_MMIO_GET(dev); regs->int_control = enable ? IVSHMEM_INT_ENABLE : 0; return 0; } #endif /* CONFIG_IVSHMEM_V2 */ static const struct ivshmem_driver_api ivshmem_api = { .get_mem = ivshmem_api_get_mem, .get_id = ivshmem_api_get_id, .get_vectors = ivshmem_api_get_vectors, .int_peer = ivshmem_api_int_peer, .register_handler = ivshmem_api_register_handler, #ifdef CONFIG_IVSHMEM_V2 .get_rw_mem_section = ivshmem_api_get_rw_mem_section, .get_output_mem_section = ivshmem_api_get_output_mem_section, .get_state = ivshmem_api_get_state, .set_state = ivshmem_api_set_state, .get_max_peers = ivshmem_api_get_max_peers, .get_protocol = ivshmem_api_get_protocol, .enable_interrupts = ivshmem_api_enable_interrupts #endif }; static int ivshmem_init(const struct device *dev) { struct ivshmem *data = dev->data; if (data->pcie->bdf == PCIE_BDF_NONE) { LOG_WRN("ivshmem device not found"); return -ENOTSUP; } LOG_INF("PCIe: ID 0x%08X, BDF 0x%X, class-rev 0x%08X", data->pcie->id, data->pcie->bdf, data->pcie->class_rev); if (!ivshmem_configure(dev)) { return -EIO; } return 0; } #define IVSHMEM_INTX_INFO(intx_idx, drv_idx) { \ COND_CODE_1(DT_IRQ_HAS_IDX(DT_DRV_INST(drv_idx), intx_idx), \ ( \ .irq = DT_IRQ_BY_IDX(DT_DRV_INST(drv_idx), intx_idx, irq), \ .priority = DT_IRQ_BY_IDX(DT_DRV_INST(drv_idx), intx_idx, priority), \ .flags = DT_IRQ_BY_IDX(DT_DRV_INST(drv_idx), intx_idx, flags), \ ), \ (.irq = INTX_IRQ_UNUSED)) \ } #define IVSHMEM_DEVICE_INIT(n) \ BUILD_ASSERT(!IS_ENABLED(CONFIG_IVSHMEM_DOORBELL) || \ ((IS_ENABLED(CONFIG_PCIE_MSI_X) && \ IS_ENABLED(CONFIG_PCIE_MSI_MULTI_VECTOR)) || \ (DT_INST_PROP(n, ivshmem_v2) && \ DT_INST_NODE_HAS_PROP(n, interrupts))), \ "IVSHMEM_DOORBELL requires either MSI-X or INTx support"); \ BUILD_ASSERT(IS_ENABLED(CONFIG_IVSHMEM_V2) || !DT_INST_PROP(n, ivshmem_v2), \ "CONFIG_IVSHMEM_V2 must be enabled for ivshmem-v2"); \ DEVICE_PCIE_INST_DECLARE(n); \ static struct ivshmem ivshmem_data_##n = { \ DEVICE_PCIE_INST_INIT(n, pcie), \ IF_ENABLED(CONFIG_IVSHMEM_V2, \ (.ivshmem_v2 = DT_INST_PROP(n, ivshmem_v2),)) \ }; \ IF_ENABLED(CONFIG_IVSHMEM_V2, ( \ static struct ivshmem_cfg ivshmem_cfg_##n = { \ .intx_info = \ { FOR_EACH_FIXED_ARG(IVSHMEM_INTX_INFO, (,), n, 0, 1, 2, 3) } \ }; \ )); \ DEVICE_DT_INST_DEFINE(n, &ivshmem_init, NULL, \ &ivshmem_data_##n, \ COND_CODE_1(CONFIG_IVSHMEM_V2, (&ivshmem_cfg_##n), (NULL)), \ POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \ &ivshmem_api); DT_INST_FOREACH_STATUS_OKAY(IVSHMEM_DEVICE_INIT)