/* sensor_bmp280.c - Driver for Bosch BMP280 temperature and pressure sensor */ /* * Copyright (c) 2016 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include "bme280.h" /* * Compensation code taken from BME280 datasheet, Section 4.2.3 * "Compensation formula". */ static void bme280_compensate_temp(struct bme280_data *data, int32_t adc_temp) { int32_t var1, var2; var1 = (((adc_temp >> 3) - ((int32_t)data->dig_t1 << 1)) * ((int32_t)data->dig_t2)) >> 11; var2 = (((((adc_temp >> 4) - ((int32_t)data->dig_t1)) * ((adc_temp >> 4) - ((int32_t)data->dig_t1))) >> 12) * ((int32_t)data->dig_t3)) >> 14; data->t_fine = var1 + var2; data->comp_temp = (data->t_fine * 5 + 128) >> 8; } static void bme280_compensate_press(struct bme280_data *data, int32_t adc_press) { int64_t var1, var2, p; var1 = ((int64_t)data->t_fine) - 128000; var2 = var1 * var1 * (int64_t)data->dig_p6; var2 = var2 + ((var1 * (int64_t)data->dig_p5) << 17); var2 = var2 + (((int64_t)data->dig_p4) << 35); var1 = ((var1 * var1 * (int64_t)data->dig_p3) >> 8) + ((var1 * (int64_t)data->dig_p2) << 12); var1 = (((((int64_t)1) << 47) + var1)) * ((int64_t)data->dig_p1) >> 33; /* Avoid exception caused by division by zero. */ if (var1 == 0) { data->comp_press = 0; return; } p = 1048576 - adc_press; p = (((p << 31) - var2) * 3125) / var1; var1 = (((int64_t)data->dig_p9) * (p >> 13) * (p >> 13)) >> 25; var2 = (((int64_t)data->dig_p8) * p) >> 19; p = ((p + var1 + var2) >> 8) + (((int64_t)data->dig_p7) << 4); data->comp_press = (uint32_t)p; } static void bme280_compensate_humidity(struct bme280_data *data, int32_t adc_humidity) { int32_t h; h = (data->t_fine - ((int32_t)76800)); h = ((((adc_humidity << 14) - (((int32_t)data->dig_h4) << 20) - (((int32_t)data->dig_h5) * h)) + ((int32_t)16384)) >> 15) * (((((((h * ((int32_t)data->dig_h6)) >> 10) * (((h * ((int32_t)data->dig_h3)) >> 11) + ((int32_t)32768))) >> 10) + ((int32_t)2097152)) * ((int32_t)data->dig_h2) + 8192) >> 14); h = (h - (((((h >> 15) * (h >> 15)) >> 7) * ((int32_t)data->dig_h1)) >> 4)); h = (h > 419430400 ? 419430400 : h); data->comp_humidity = (uint32_t)(h >> 12); } static int bme280_sample_fetch(struct device *dev, enum sensor_channel chan) { struct bme280_data *data = dev->driver_data; uint8_t buf[8]; int32_t adc_press, adc_temp, adc_humidity; int size = 6; __ASSERT_NO_MSG(chan == SENSOR_CHAN_ALL); if (data->chip_id == BME280_CHIP_ID) { size = 8; } if (i2c_burst_read(data->i2c_master, data->i2c_slave_addr, BME280_REG_PRESS_MSB, buf, size) < 0) { return -EIO; } adc_press = (buf[0] << 12) | (buf[1] << 4) | (buf[2] >> 4); adc_temp = (buf[3] << 12) | (buf[4] << 4) | (buf[5] >> 4); bme280_compensate_temp(data, adc_temp); bme280_compensate_press(data, adc_press); if (data->chip_id == BME280_CHIP_ID) { adc_humidity = (buf[6] << 8) | buf[7]; bme280_compensate_humidity(data, adc_humidity); } return 0; } static int bme280_channel_get(struct device *dev, enum sensor_channel chan, struct sensor_value *val) { struct bme280_data *data = dev->driver_data; switch (chan) { case SENSOR_CHAN_TEMP: /* * data->comp_temp has a resolution of 0.01 degC. So * 5123 equals 51.23 degC. */ val->type = SENSOR_VALUE_TYPE_INT_PLUS_MICRO; val->val1 = data->comp_temp / 100; val->val2 = data->comp_temp % 100 * 10000; break; case SENSOR_CHAN_PRESS: /* * data->comp_press has 24 integer bits and 8 * fractional. Output value of 24674867 represents * 24674867/256 = 96386.2 Pa = 963.862 hPa */ val->type = SENSOR_VALUE_TYPE_INT_PLUS_MICRO; val->val1 = (data->comp_press >> 8) / 1000; val->val2 = (data->comp_press >> 8) % 1000 * 1000 + (((data->comp_press & 0xff) * 1000) >> 8); break; case SENSOR_CHAN_HUMIDITY: /* * data->comp_humidity has 22 integer bits and 10 * fractional. Output value of 47445 represents * 47445/1024 = 46.333 %RH */ val->type = SENSOR_VALUE_TYPE_INT_PLUS_MICRO; val->val1 = (data->comp_humidity >> 10); val->val2 = (((data->comp_humidity & 0x3ff) * 1000 * 1000) >> 10); val->val1 = val->val1 * 1000 + (val->val2 * 1000) / 1000000; val->val2 = (val->val2 * 1000) % 1000000; break; default: return -EINVAL; } return 0; } static const struct sensor_driver_api bme280_api_funcs = { .sample_fetch = bme280_sample_fetch, .channel_get = bme280_channel_get, }; static int bme280_read_compensation(struct bme280_data *data) { uint16_t buf[12]; uint8_t hbuf[7]; int err = 0; err = i2c_burst_read(data->i2c_master, data->i2c_slave_addr, BME280_REG_COMP_START, (uint8_t *)buf, sizeof(buf)); if (err < 0) { return err; } data->dig_t1 = sys_le16_to_cpu(buf[0]); data->dig_t2 = sys_le16_to_cpu(buf[1]); data->dig_t3 = sys_le16_to_cpu(buf[2]); data->dig_p1 = sys_le16_to_cpu(buf[3]); data->dig_p2 = sys_le16_to_cpu(buf[4]); data->dig_p3 = sys_le16_to_cpu(buf[5]); data->dig_p4 = sys_le16_to_cpu(buf[6]); data->dig_p5 = sys_le16_to_cpu(buf[7]); data->dig_p6 = sys_le16_to_cpu(buf[8]); data->dig_p7 = sys_le16_to_cpu(buf[9]); data->dig_p8 = sys_le16_to_cpu(buf[10]); data->dig_p9 = sys_le16_to_cpu(buf[11]); if (data->chip_id == BME280_CHIP_ID) { err = i2c_reg_read_byte(data->i2c_master, data->i2c_slave_addr, BME280_REG_HUM_COMP_PART1, &data->dig_h1); if (err < 0) { return err; } err = i2c_burst_read(data->i2c_master, data->i2c_slave_addr, BME280_REG_HUM_COMP_PART2, hbuf, 7); if (err < 0) { return err; } data->dig_h2 = (hbuf[1] << 8) | hbuf[0]; data->dig_h3 = hbuf[2]; data->dig_h4 = (hbuf[3] << 4) | (hbuf[4] & 0x0F); data->dig_h5 = ((hbuf[4] >> 4) & 0x0F) | (hbuf[5] << 4); data->dig_h6 = hbuf[6]; } return 0; } static int bme280_chip_init(struct device *dev) { struct bme280_data *data = (struct bme280_data *) dev->driver_data; int err = i2c_reg_read_byte(data->i2c_master, data->i2c_slave_addr, BME280_REG_ID, &data->chip_id); if (err < 0) { return err; } if (data->chip_id == BME280_CHIP_ID) { SYS_LOG_DBG("BME280 chip detected"); } else if (data->chip_id == BMP280_CHIP_ID_MP || data->chip_id == BMP280_CHIP_ID_SAMPLE_1) { SYS_LOG_DBG("BMP280 chip detected"); } else { SYS_LOG_DBG("bad chip id 0x%x", data->chip_id); return -ENOTSUP; } err = bme280_read_compensation(data); if (err < 0) { return err; } if (data->chip_id == BME280_CHIP_ID) { i2c_reg_write_byte(data->i2c_master, data->i2c_slave_addr, BME280_REG_CTRL_HUM, BME280_HUMIDITY_OVER); } i2c_reg_write_byte(data->i2c_master, data->i2c_slave_addr, BME280_REG_CTRL_MEAS, BME280_CTRL_MEAS_VAL); i2c_reg_write_byte(data->i2c_master, data->i2c_slave_addr, BME280_REG_CONFIG, BME280_CONFIG_VAL); return 0; } int bme280_init(struct device *dev) { struct bme280_data *data = dev->driver_data; data->i2c_master = device_get_binding(CONFIG_BME280_I2C_MASTER_DEV_NAME); if (!data->i2c_master) { SYS_LOG_DBG("i2c master not found: %s", CONFIG_BME280_I2C_MASTER_DEV_NAME); return -EINVAL; } data->i2c_slave_addr = BME280_I2C_ADDR; if (bme280_chip_init(dev) < 0) { return -EINVAL; } dev->driver_api = &bme280_api_funcs; return 0; } static struct bme280_data bme280_data; DEVICE_INIT(bme280, CONFIG_BME280_DEV_NAME, bme280_init, &bme280_data, NULL, POST_KERNEL, CONFIG_SENSOR_INIT_PRIORITY);