/* * Copyright (c) 1997-2010, 2013-2014 Wind River Systems, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @file * @brief FIFO kernel services * * This file contains all the services needed for the implementation of a FIFO * for the microkernel. * * */ #include #include #include #include /** * * @brief Finish performing an incomplete FIFO enqueue request * * @return N/A */ void _k_fifo_enque_reply(struct k_args *A) { #ifdef CONFIG_SYS_CLOCK_EXISTS if (A->Time.timer) FREETIMER(A->Time.timer); if (unlikely(A->Comm == _K_SVC_FIFO_ENQUE_REPLY_TIMEOUT)) { REMOVE_ELM(A); A->Time.rcode = RC_TIME; } else { A->Time.rcode = RC_OK; } #else A->Time.rcode = RC_OK; #endif _k_state_bit_reset(A->Ctxt.task, TF_ENQU); } /** * * @brief Finish performing an incomplete FIFO enqueue request with timeout. * * @param A Pointer to a k_args structure * * @return N/A * * @sa _k_fifo_enque_reply */ void _k_fifo_enque_reply_timeout(struct k_args *A) { _k_fifo_enque_reply(A); } /** * * @brief Perform a FIFO enqueue request * * @return N/A */ void _k_fifo_enque_request(struct k_args *A) { struct k_args *W; struct _k_fifo_struct *Q; int Qid, n, w; char *p, *q; /* Ski char->uint32_t ??? */ Qid = A->args.q1.queue; Q = (struct _k_fifo_struct *)Qid; w = OCTET_TO_SIZEOFUNIT(Q->element_size); q = A->args.q1.data; n = Q->num_used; if (n < Q->Nelms) { W = Q->waiters; if (W) { Q->waiters = W->next; p = W->args.q1.data; memcpy(p, q, w); #ifdef CONFIG_SYS_CLOCK_EXISTS if (W->Time.timer) { _k_timeout_cancel(W); W->Comm = _K_SVC_FIFO_DEQUE_REPLY; } else { #endif W->Time.rcode = RC_OK; _k_state_bit_reset(W->Ctxt.task, TF_DEQU); } #ifdef CONFIG_SYS_CLOCK_EXISTS } #endif else { p = Q->enqueue_point; memcpy(p, q, w); p = (char *)((int)p + w); if (p == Q->end_point) Q->enqueue_point = Q->base; else Q->enqueue_point = p; Q->num_used = ++n; #ifdef CONFIG_OBJECT_MONITOR if (Q->high_watermark < n) Q->high_watermark = n; #endif } A->Time.rcode = RC_OK; #ifdef CONFIG_OBJECT_MONITOR Q->count++; #endif } else { if (likely(A->Time.ticks != TICKS_NONE)) { A->Ctxt.task = _k_current_task; A->priority = _k_current_task->priority; _k_state_bit_set(_k_current_task, TF_ENQU); INSERT_ELM(Q->waiters, A); #ifdef CONFIG_SYS_CLOCK_EXISTS if (A->Time.ticks == TICKS_UNLIMITED) A->Time.timer = NULL; else { A->Comm = _K_SVC_FIFO_ENQUE_REPLY_TIMEOUT; _k_timeout_alloc(A); } #endif } else { A->Time.rcode = RC_FAIL; } } } int task_fifo_put(kfifo_t queue, void *data, int32_t timeout) { struct k_args A; A.Comm = _K_SVC_FIFO_ENQUE_REQUEST; A.Time.ticks = timeout; A.args.q1.data = (char *)data; A.args.q1.queue = queue; KERNEL_ENTRY(&A); return A.Time.rcode; } /** * * @brief Finish performing an incomplete FIFO dequeue request * * @return N/A */ void _k_fifo_deque_reply(struct k_args *A) { #ifdef CONFIG_SYS_CLOCK_EXISTS if (A->Time.timer) FREETIMER(A->Time.timer); if (unlikely(A->Comm == _K_SVC_FIFO_DEQUE_REPLY_TIMEOUT)) { REMOVE_ELM(A); A->Time.rcode = RC_TIME; } else { A->Time.rcode = RC_OK; } #else A->Time.rcode = RC_OK; #endif _k_state_bit_reset(A->Ctxt.task, TF_DEQU); } /** * * @brief Finish performing an incomplete FIFO dequeue request with timeout. * * @param A Pointer to a k_args structure. * * @return N/A * * @sa _k_fifo_deque_reply */ void _k_fifo_deque_reply_timeout(struct k_args *A) { _k_fifo_deque_reply(A); } /** * * @brief Perform FIFO dequeue request * * @return N/A */ void _k_fifo_deque_request(struct k_args *A) { struct k_args *W; struct _k_fifo_struct *Q; int Qid, n, w; char *p, *q; /* idem */ Qid = A->args.q1.queue; Q = (struct _k_fifo_struct *)Qid; w = OCTET_TO_SIZEOFUNIT(Q->element_size); p = A->args.q1.data; n = Q->num_used; if (n) { q = Q->dequeue_point; memcpy(p, q, w); q = (char *)((int)q + w); if (q == Q->end_point) Q->dequeue_point = Q->base; else Q->dequeue_point = q; A->Time.rcode = RC_OK; W = Q->waiters; if (W) { Q->waiters = W->next; p = Q->enqueue_point; q = W->args.q1.data; w = OCTET_TO_SIZEOFUNIT(Q->element_size); memcpy(p, q, w); p = (char *)((int)p + w); if (p == Q->end_point) Q->enqueue_point = Q->base; else Q->enqueue_point = p; #ifdef CONFIG_SYS_CLOCK_EXISTS if (W->Time.timer) { _k_timeout_cancel(W); W->Comm = _K_SVC_FIFO_ENQUE_REPLY; } else { #endif W->Time.rcode = RC_OK; _k_state_bit_reset(W->Ctxt.task, TF_ENQU); #ifdef CONFIG_SYS_CLOCK_EXISTS } #endif #ifdef CONFIG_OBJECT_MONITOR Q->count++; #endif } else Q->num_used = --n; } else { if (likely(A->Time.ticks != TICKS_NONE)) { A->Ctxt.task = _k_current_task; A->priority = _k_current_task->priority; _k_state_bit_set(_k_current_task, TF_DEQU); INSERT_ELM(Q->waiters, A); #ifdef CONFIG_SYS_CLOCK_EXISTS if (A->Time.ticks == TICKS_UNLIMITED) A->Time.timer = NULL; else { A->Comm = _K_SVC_FIFO_DEQUE_REPLY_TIMEOUT; _k_timeout_alloc(A); } #endif } else { A->Time.rcode = RC_FAIL; } } } int task_fifo_get(kfifo_t queue, void *data, int32_t timeout) { struct k_args A; A.Comm = _K_SVC_FIFO_DEQUE_REQUEST; A.Time.ticks = timeout; A.args.q1.data = (char *)data; A.args.q1.queue = queue; KERNEL_ENTRY(&A); return A.Time.rcode; } /** * * @brief Perform miscellaneous FIFO request * @param A Kernel Argument * * @return N/A */ void _k_fifo_ioctl(struct k_args *A) { struct _k_fifo_struct *Q; int Qid; Qid = A->args.q1.queue; Q = (struct _k_fifo_struct *)Qid; if (A->args.q1.size) { if (Q->num_used) { struct k_args *X; while ((X = Q->waiters)) { Q->waiters = X->next; #ifdef CONFIG_SYS_CLOCK_EXISTS if (likely(X->Time.timer)) { _k_timeout_cancel(X); X->Comm = _K_SVC_FIFO_ENQUE_REPLY; } else { #endif X->Time.rcode = RC_FAIL; _k_state_bit_reset(X->Ctxt.task, TF_ENQU); #ifdef CONFIG_SYS_CLOCK_EXISTS } #endif } } Q->num_used = 0; Q->enqueue_point = Q->dequeue_point = Q->base; A->Time.rcode = RC_OK; } else A->Time.rcode = Q->num_used; } /** * * @brief Miscellaneous FIFO request * * Depending upon the chosen operation, this routine will ... * 1. = 0 : query the number of FIFO entries * 2. = 1 : purge the FIFO of its entries * * @param queue FIFO queue * @param op 0 for status query and 1 for purge * @return # of FIFO entries on query; RC_OK on purge */ int _task_fifo_ioctl(kfifo_t queue, int op) { struct k_args A; A.Comm = _K_SVC_FIFO_IOCTL; A.args.q1.queue = queue; A.args.q1.size = op; KERNEL_ENTRY(&A); return A.Time.rcode; }