/* * Copyright (c) 2018 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #define SYS_LOG_LEVEL SYS_LOG_LEVEL_INFO #define SYS_LOG_DOMAIN "soc/s1000" #include #include #include #include #include #include #include #include static u32_t ref_clk_freq; void _soc_irq_enable(u32_t irq) { struct device *dev_cavs, *dev_ictl; switch (XTENSA_IRQ_NUMBER(irq)) { case CAVS_ICTL_0_IRQ: dev_cavs = device_get_binding(CONFIG_CAVS_ICTL_0_NAME); break; case CAVS_ICTL_1_IRQ: dev_cavs = device_get_binding(CONFIG_CAVS_ICTL_1_NAME); break; case CAVS_ICTL_2_IRQ: dev_cavs = device_get_binding(CONFIG_CAVS_ICTL_2_NAME); break; case CAVS_ICTL_3_IRQ: dev_cavs = device_get_binding(CONFIG_CAVS_ICTL_3_NAME); break; default: /* regular interrupt */ _xtensa_irq_enable(XTENSA_IRQ_NUMBER(irq)); return; } if (!dev_cavs) { SYS_LOG_DBG("board: CAVS device binding failed\n"); return; } /* If the control comes here it means the specified interrupt * is in either CAVS interrupt logic or DW interrupt controller */ _xtensa_irq_enable(XTENSA_IRQ_NUMBER(irq)); switch (CAVS_IRQ_NUMBER(irq)) { case DW_ICTL_IRQ_CAVS_OFFSET: dev_ictl = device_get_binding(CONFIG_DW_ICTL_NAME); break; default: /* The source of the interrupt is in CAVS interrupt logic */ irq_enable_next_level(dev_cavs, CAVS_IRQ_NUMBER(irq)); return; } if (!dev_ictl) { SYS_LOG_DBG("board: DW intr_control device binding failed\n"); return; } /* If the control comes here it means the specified interrupt * is in DW interrupt controller */ irq_enable_next_level(dev_cavs, CAVS_IRQ_NUMBER(irq)); /* Manipulate the relevant bit in the interrupt controller * register as needed */ irq_enable_next_level(dev_ictl, INTR_CNTL_IRQ_NUM(irq)); } void _soc_irq_disable(u32_t irq) { struct device *dev_cavs, *dev_ictl; switch (XTENSA_IRQ_NUMBER(irq)) { case CAVS_ICTL_0_IRQ: dev_cavs = device_get_binding(CONFIG_CAVS_ICTL_0_NAME); break; case CAVS_ICTL_1_IRQ: dev_cavs = device_get_binding(CONFIG_CAVS_ICTL_1_NAME); break; case CAVS_ICTL_2_IRQ: dev_cavs = device_get_binding(CONFIG_CAVS_ICTL_2_NAME); break; case CAVS_ICTL_3_IRQ: dev_cavs = device_get_binding(CONFIG_CAVS_ICTL_3_NAME); break; default: /* regular interrupt */ _xtensa_irq_disable(XTENSA_IRQ_NUMBER(irq)); return; } if (!dev_cavs) { SYS_LOG_DBG("board: CAVS device binding failed\n"); return; } /* If the control comes here it means the specified interrupt * is in either CAVS interrupt logic or DW interrupt controller */ switch (CAVS_IRQ_NUMBER(irq)) { case DW_ICTL_IRQ_CAVS_OFFSET: dev_ictl = device_get_binding(CONFIG_DW_ICTL_NAME); break; default: /* The source of the interrupt is in CAVS interrupt logic */ irq_disable_next_level(dev_cavs, CAVS_IRQ_NUMBER(irq)); /* Disable the parent IRQ if all children are disabled */ if (!irq_is_enabled_next_level(dev_cavs)) { _xtensa_irq_disable(XTENSA_IRQ_NUMBER(irq)); } return; } if (!dev_ictl) { SYS_LOG_DBG("board: DW intr_control device binding failed\n"); return; } /* If the control comes here it means the specified interrupt * is in DW interrupt controller. * Manipulate the relevant bit in the interrupt controller * register as needed */ irq_disable_next_level(dev_ictl, INTR_CNTL_IRQ_NUM(irq)); /* Disable the parent IRQ if all children are disabled */ if (!irq_is_enabled_next_level(dev_ictl)) { irq_disable_next_level(dev_cavs, CAVS_IRQ_NUMBER(irq)); if (!irq_is_enabled_next_level(dev_cavs)) { _xtensa_irq_disable(XTENSA_IRQ_NUMBER(irq)); } } } static inline void soc_set_resource_ownership(void) { volatile struct soc_resource_alloc_regs *regs = (volatile struct soc_resource_alloc_regs *) SOC_RESOURCE_ALLOC_REG_BASE; int index; /* set ownership of DMA controllers and channels */ for (index = 0; index < SOC_NUM_LPGPDMAC; index++) { regs->lpgpdmacxo[index] = SOC_LPGPDMAC_OWNER_DSP; } /* set ownership of I2S and DMIC controllers */ regs->dspiopo = SOC_DSPIOP_I2S_OWNSEL_DSP | SOC_DSPIOP_DMIC_OWNSEL_DSP; /* set ownership of timestamp and M/N dividers */ regs->geno = SOC_GENO_TIMESTAMP_OWNER_DSP | SOC_GENO_MNDIV_OWNER_DSP; } void dcache_writeback_region(void *addr, size_t size) { xthal_dcache_region_writeback(addr, size); } void dcache_invalidate_region(void *addr, size_t size) { xthal_dcache_region_invalidate(addr, size); } u32_t soc_get_ref_clk_freq(void) { return ref_clk_freq; } static void soc_set_power_and_clock(void) { volatile struct soc_dsp_shim_regs *regs = (volatile struct soc_dsp_shim_regs *) SOC_DSP_SHIM_REG_BASE; regs->clkctl |= SOC_CLKCTL_REQ_FAST_CLK | SOC_CLKCTL_OCS_FAST_CLK; regs->pwrctl |= SOC_PWRCTL_DISABLE_PWR_GATING_DSP1 | SOC_PWRCTL_DISABLE_PWR_GATING_DSP0; } static void soc_read_bootstraps(void) { u32_t bootstrap; bootstrap = *((volatile u32_t *)SOC_S1000_GLB_CTRL_STRAPS); bootstrap &= SOC_S1000_STRAP_REF_CLK; switch (bootstrap) { case SOC_S1000_STRAP_REF_CLK_19P2: ref_clk_freq = 19200000; break; case SOC_S1000_STRAP_REF_CLK_24P576: ref_clk_freq = 24576000; break; case SOC_S1000_STRAP_REF_CLK_38P4: default: ref_clk_freq = 38400000; break; } } static int soc_init(struct device *dev) { soc_read_bootstraps(); ref_clk_freq = soc_get_ref_clk_freq(); SYS_LOG_INF("Reference clock frequency: %u Hz", ref_clk_freq); soc_set_resource_ownership(); soc_set_power_and_clock(); return 0; } SYS_INIT(soc_init, PRE_KERNEL_1, 99);