/* * Copyright (c) 2016-2017 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ #ifndef ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ #define ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ #include #include #include #include #include BUILD_ASSERT(K_LOWEST_APPLICATION_THREAD_PRIO >= K_HIGHEST_APPLICATION_THREAD_PRIO); #ifdef CONFIG_MULTITHREADING #define Z_VALID_PRIO(prio, entry_point) \ (((prio) == K_IDLE_PRIO && z_is_idle_thread_entry(entry_point)) || \ ((K_LOWEST_APPLICATION_THREAD_PRIO \ >= K_HIGHEST_APPLICATION_THREAD_PRIO) \ && (prio) >= K_HIGHEST_APPLICATION_THREAD_PRIO \ && (prio) <= K_LOWEST_APPLICATION_THREAD_PRIO)) #define Z_ASSERT_VALID_PRIO(prio, entry_point) do { \ __ASSERT(Z_VALID_PRIO((prio), (entry_point)), \ "invalid priority (%d); allowed range: %d to %d", \ (prio), \ K_LOWEST_APPLICATION_THREAD_PRIO, \ K_HIGHEST_APPLICATION_THREAD_PRIO); \ } while (false) #else #define Z_VALID_PRIO(prio, entry_point) ((prio) == -1) #define Z_ASSERT_VALID_PRIO(prio, entry_point) __ASSERT((prio) == -1, "") #endif void z_sched_init(void); void z_move_thread_to_end_of_prio_q(struct k_thread *thread); int z_is_thread_time_slicing(struct k_thread *thread); void z_unpend_thread_no_timeout(struct k_thread *thread); struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q); int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key, _wait_q_t *wait_q, k_timeout_t timeout); int z_pend_curr_irqlock(uint32_t key, _wait_q_t *wait_q, k_timeout_t timeout); void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q, k_timeout_t timeout); void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key); void z_reschedule_irqlock(uint32_t key); struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q); void z_unpend_thread(struct k_thread *thread); int z_unpend_all(_wait_q_t *wait_q); void z_thread_priority_set(struct k_thread *thread, int prio); bool z_set_prio(struct k_thread *thread, int prio); void *z_get_next_switch_handle(void *interrupted); void idle(void *unused1, void *unused2, void *unused3); void z_time_slice(int ticks); void z_reset_time_slice(void); void z_sched_abort(struct k_thread *thread); void z_sched_ipi(void); void z_sched_start(struct k_thread *thread); void z_ready_thread(struct k_thread *thread); void z_requeue_current(struct k_thread *curr); struct k_thread *z_swap_next_thread(void); void z_thread_abort(struct k_thread *thread); static inline void z_pend_curr_unlocked(_wait_q_t *wait_q, k_timeout_t timeout) { (void) z_pend_curr_irqlock(arch_irq_lock(), wait_q, timeout); } static inline void z_reschedule_unlocked(void) { (void) z_reschedule_irqlock(arch_irq_lock()); } static inline bool z_is_idle_thread_entry(void *entry_point) { return entry_point == idle; } static inline bool z_is_idle_thread_object(struct k_thread *thread) { #ifdef CONFIG_MULTITHREADING #ifdef CONFIG_SMP return thread->base.is_idle; #else return thread == &z_idle_threads[0]; #endif #else return false; #endif /* CONFIG_MULTITHREADING */ } static inline bool z_is_thread_suspended(struct k_thread *thread) { return (thread->base.thread_state & _THREAD_SUSPENDED) != 0U; } static inline bool z_is_thread_pending(struct k_thread *thread) { return (thread->base.thread_state & _THREAD_PENDING) != 0U; } static inline bool z_is_thread_prevented_from_running(struct k_thread *thread) { uint8_t state = thread->base.thread_state; return (state & (_THREAD_PENDING | _THREAD_PRESTART | _THREAD_DEAD | _THREAD_DUMMY | _THREAD_SUSPENDED)) != 0U; } static inline bool z_is_thread_timeout_active(struct k_thread *thread) { return !z_is_inactive_timeout(&thread->base.timeout); } static inline bool z_is_thread_ready(struct k_thread *thread) { return !((z_is_thread_prevented_from_running(thread)) != 0U || z_is_thread_timeout_active(thread)); } static inline bool z_has_thread_started(struct k_thread *thread) { return (thread->base.thread_state & _THREAD_PRESTART) == 0U; } static inline bool z_is_thread_state_set(struct k_thread *thread, uint32_t state) { return (thread->base.thread_state & state) != 0U; } static inline bool z_is_thread_queued(struct k_thread *thread) { return z_is_thread_state_set(thread, _THREAD_QUEUED); } static inline void z_mark_thread_as_suspended(struct k_thread *thread) { thread->base.thread_state |= _THREAD_SUSPENDED; SYS_PORT_TRACING_FUNC(k_thread, sched_suspend, thread); } static inline void z_mark_thread_as_not_suspended(struct k_thread *thread) { thread->base.thread_state &= ~_THREAD_SUSPENDED; SYS_PORT_TRACING_FUNC(k_thread, sched_resume, thread); } static inline void z_mark_thread_as_started(struct k_thread *thread) { thread->base.thread_state &= ~_THREAD_PRESTART; } static inline void z_mark_thread_as_pending(struct k_thread *thread) { thread->base.thread_state |= _THREAD_PENDING; } static inline void z_mark_thread_as_not_pending(struct k_thread *thread) { thread->base.thread_state &= ~_THREAD_PENDING; } static inline void z_set_thread_states(struct k_thread *thread, uint32_t states) { thread->base.thread_state |= states; } static inline void z_reset_thread_states(struct k_thread *thread, uint32_t states) { thread->base.thread_state &= ~states; } static inline bool z_is_under_prio_ceiling(int prio) { return prio >= CONFIG_PRIORITY_CEILING; } static inline int z_get_new_prio_with_ceiling(int prio) { return z_is_under_prio_ceiling(prio) ? prio : CONFIG_PRIORITY_CEILING; } static inline bool z_is_prio1_higher_than_or_equal_to_prio2(int prio1, int prio2) { return prio1 <= prio2; } static inline bool z_is_prio_higher_or_equal(int prio1, int prio2) { return z_is_prio1_higher_than_or_equal_to_prio2(prio1, prio2); } static inline bool z_is_prio1_lower_than_or_equal_to_prio2(int prio1, int prio2) { return prio1 >= prio2; } static inline bool z_is_prio1_higher_than_prio2(int prio1, int prio2) { return prio1 < prio2; } static inline bool z_is_prio_higher(int prio, int test_prio) { return z_is_prio1_higher_than_prio2(prio, test_prio); } static inline bool z_is_prio_lower_or_equal(int prio1, int prio2) { return z_is_prio1_lower_than_or_equal_to_prio2(prio1, prio2); } int32_t z_sched_prio_cmp(struct k_thread *thread_1, struct k_thread *thread_2); static inline bool _is_valid_prio(int prio, void *entry_point) { if (prio == K_IDLE_PRIO && z_is_idle_thread_entry(entry_point)) { return true; } if (!z_is_prio_higher_or_equal(prio, K_LOWEST_APPLICATION_THREAD_PRIO)) { return false; } if (!z_is_prio_lower_or_equal(prio, K_HIGHEST_APPLICATION_THREAD_PRIO)) { return false; } return true; } static inline void _ready_one_thread(_wait_q_t *wq) { struct k_thread *thread = z_unpend_first_thread(wq); if (thread != NULL) { z_ready_thread(thread); } } static inline void z_sched_lock(void) { __ASSERT(!arch_is_in_isr(), ""); __ASSERT(_current->base.sched_locked != 1U, ""); --_current->base.sched_locked; compiler_barrier(); } static ALWAYS_INLINE void z_sched_unlock_no_reschedule(void) { __ASSERT(!arch_is_in_isr(), ""); __ASSERT(_current->base.sched_locked != 0U, ""); compiler_barrier(); ++_current->base.sched_locked; } static ALWAYS_INLINE bool z_is_thread_timeout_expired(struct k_thread *thread) { #ifdef CONFIG_SYS_CLOCK_EXISTS return thread->base.timeout.dticks == _EXPIRED; #else return 0; #endif } /* * APIs for working with the Zephyr kernel scheduler. Intended for use in * management of IPC objects, either in the core kernel or other IPC * implemented by OS compatibility layers, providing basic wait/wake operations * with spinlocks used for synchronization. * * These APIs are public and will be treated as contract, even if the * underlying scheduler implementation changes. */ /** * Wake up a thread pending on the provided wait queue * * Given a wait_q, wake up the highest priority thread on the queue. If the * queue was empty just return false. * * Otherwise, do the following, in order, holding sched_spinlock the entire * time so that the thread state is guaranteed not to change: * - Set the thread's swap return values to swap_retval and swap_data * - un-pend and ready the thread, but do not invoke the scheduler. * * Repeated calls to this function until it returns false is a suitable * way to wake all threads on the queue. * * It is up to the caller to implement locking such that the return value of * this function (whether a thread was woken up or not) does not immediately * become stale. Calls to wait and wake on the same wait_q object must have * synchronization. Calling this without holding any spinlock is a sign that * this API is not being used properly. * * @param wait_q Wait queue to wake up the highest prio thread * @param swap_retval Swap return value for woken thread * @param swap_data Data return value to supplement swap_retval. May be NULL. * @retval true If a thread was woken up * @retval false If the wait_q was empty */ bool z_sched_wake(_wait_q_t *wait_q, int swap_retval, void *swap_data); /** * Wake up all threads pending on the provided wait queue * * Convenience function to invoke z_sched_wake() on all threads in the queue * until there are no more to wake up. * * @param wait_q Wait queue to wake up the highest prio thread * @param swap_retval Swap return value for woken thread * @param swap_data Data return value to supplement swap_retval. May be NULL. * @retval true If any threads were woken up * @retval false If the wait_q was empty */ static inline bool z_sched_wake_all(_wait_q_t *wait_q, int swap_retval, void *swap_data) { bool woken = false; while (z_sched_wake(wait_q, swap_retval, swap_data)) { woken = true; } /* True if we woke at least one thread up */ return woken; } /** * Atomically put the current thread to sleep on a wait queue, with timeout * * The thread will be added to the provided waitqueue. The lock, which should * be held by the caller with the provided key, will be released once this is * completely done and we have swapped out. * * The return value and data pointer is set by whoever woke us up via * z_sched_wake. * * @param lock Address of spinlock to release when we swap out * @param key Key to the provided spinlock when it was locked * @param wait_q Wait queue to go to sleep on * @param timeout Waiting period to be woken up, or K_FOREVER to wait * indefinitely. * @param data Storage location for data pointer set when thread was woken up. * May be NULL if not used. * @retval Return value set by whatever woke us up, or -EAGAIN if the timeout * expired without being woken up. */ int z_sched_wait(struct k_spinlock *lock, k_spinlock_key_t key, _wait_q_t *wait_q, k_timeout_t timeout, void **data); #endif /* ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ */