/* * Copyright (c) 2016 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include /** * @brief Initialize kernel memory slab subsystem. * * Perform any initialization of memory slabs that wasn't done at build time. * Currently this just involves creating the list of free blocks for each slab. * * @return N/A */ static int create_free_list(struct k_mem_slab *slab) { uint32_t j; char *p; /* blocks must be word aligned */ CHECKIF(((slab->block_size | (uintptr_t)slab->buffer) & (sizeof(void *) - 1)) != 0U) { return -EINVAL; } slab->free_list = NULL; p = slab->buffer; for (j = 0U; j < slab->num_blocks; j++) { *(char **)p = slab->free_list; slab->free_list = p; p += slab->block_size; } return 0; } /** * @brief Complete initialization of statically defined memory slabs. * * Perform any initialization that wasn't done at build time. * * @return N/A */ static int init_mem_slab_module(const struct device *dev) { int rc = 0; ARG_UNUSED(dev); Z_STRUCT_SECTION_FOREACH(k_mem_slab, slab) { rc = create_free_list(slab); if (rc < 0) { goto out; } z_object_init(slab); } out: return rc; } SYS_INIT(init_mem_slab_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks) { int rc = 0; slab->num_blocks = num_blocks; slab->block_size = block_size; slab->buffer = buffer; slab->num_used = 0U; slab->lock = (struct k_spinlock) {}; #ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION slab->max_used = 0U; #endif rc = create_free_list(slab); if (rc < 0) { goto out; } z_waitq_init(&slab->wait_q); z_object_init(slab); out: SYS_PORT_TRACING_OBJ_INIT(k_mem_slab, slab, rc); return rc; } int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout) { k_spinlock_key_t key = k_spin_lock(&slab->lock); int result; SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_mem_slab, alloc, slab, timeout); if (slab->free_list != NULL) { /* take a free block */ *mem = slab->free_list; slab->free_list = *(char **)(slab->free_list); slab->num_used++; #ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION slab->max_used = MAX(slab->num_used, slab->max_used); #endif result = 0; } else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT) || !IS_ENABLED(CONFIG_MULTITHREADING)) { /* don't wait for a free block to become available */ *mem = NULL; result = -ENOMEM; } else { SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_mem_slab, alloc, slab, timeout); /* wait for a free block or timeout */ result = z_pend_curr(&slab->lock, key, &slab->wait_q, timeout); if (result == 0) { *mem = _current->base.swap_data; } SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mem_slab, alloc, slab, timeout, result); return result; } SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mem_slab, alloc, slab, timeout, result); k_spin_unlock(&slab->lock, key); return result; } void k_mem_slab_free(struct k_mem_slab *slab, void **mem) { k_spinlock_key_t key = k_spin_lock(&slab->lock); SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_mem_slab, free, slab); if (slab->free_list == NULL && IS_ENABLED(CONFIG_MULTITHREADING)) { struct k_thread *pending_thread = z_unpend_first_thread(&slab->wait_q); if (pending_thread != NULL) { SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mem_slab, free, slab); z_thread_return_value_set_with_data(pending_thread, 0, *mem); z_ready_thread(pending_thread); z_reschedule(&slab->lock, key); return; } } **(char ***) mem = slab->free_list; slab->free_list = *(char **) mem; slab->num_used--; SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mem_slab, free, slab); k_spin_unlock(&slab->lock, key); }