/* * Copyright (c) 2010-2014 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief Kernel initialization module * * This module contains routines that are used to initialize the kernel. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include LOG_MODULE_REGISTER(os, CONFIG_KERNEL_LOG_LEVEL); /* the only struct z_kernel instance */ __pinned_bss struct z_kernel _kernel; #ifdef CONFIG_PM __pinned_bss atomic_t _cpus_active; #endif /* init/main and idle threads */ K_THREAD_PINNED_STACK_DEFINE(z_main_stack, CONFIG_MAIN_STACK_SIZE); struct k_thread z_main_thread; #ifdef CONFIG_MULTITHREADING __pinned_bss struct k_thread z_idle_threads[CONFIG_MP_MAX_NUM_CPUS]; static K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_idle_stacks, CONFIG_MP_MAX_NUM_CPUS, CONFIG_IDLE_STACK_SIZE); static void z_init_static_threads(void) { STRUCT_SECTION_FOREACH(_static_thread_data, thread_data) { z_setup_new_thread( thread_data->init_thread, thread_data->init_stack, thread_data->init_stack_size, thread_data->init_entry, thread_data->init_p1, thread_data->init_p2, thread_data->init_p3, thread_data->init_prio, thread_data->init_options, thread_data->init_name); thread_data->init_thread->init_data = thread_data; } #ifdef CONFIG_USERSPACE STRUCT_SECTION_FOREACH(k_object_assignment, pos) { for (int i = 0; pos->objects[i] != NULL; i++) { k_object_access_grant(pos->objects[i], pos->thread); } } #endif /* CONFIG_USERSPACE */ /* * Non-legacy static threads may be started immediately or * after a previously specified delay. Even though the * scheduler is locked, ticks can still be delivered and * processed. Take a sched lock to prevent them from running * until they are all started. * * Note that static threads defined using the legacy API have a * delay of K_FOREVER. */ k_sched_lock(); STRUCT_SECTION_FOREACH(_static_thread_data, thread_data) { k_timeout_t init_delay = Z_THREAD_INIT_DELAY(thread_data); if (!K_TIMEOUT_EQ(init_delay, K_FOREVER)) { thread_schedule_new(thread_data->init_thread, init_delay); } } k_sched_unlock(); } #else #define z_init_static_threads() do { } while (false) #endif /* CONFIG_MULTITHREADING */ extern const struct init_entry __init_start[]; extern const struct init_entry __init_EARLY_start[]; extern const struct init_entry __init_PRE_KERNEL_1_start[]; extern const struct init_entry __init_PRE_KERNEL_2_start[]; extern const struct init_entry __init_POST_KERNEL_start[]; extern const struct init_entry __init_APPLICATION_start[]; extern const struct init_entry __init_end[]; enum init_level { INIT_LEVEL_EARLY = 0, INIT_LEVEL_PRE_KERNEL_1, INIT_LEVEL_PRE_KERNEL_2, INIT_LEVEL_POST_KERNEL, INIT_LEVEL_APPLICATION, #ifdef CONFIG_SMP INIT_LEVEL_SMP, #endif /* CONFIG_SMP */ }; #ifdef CONFIG_SMP extern const struct init_entry __init_SMP_start[]; #endif /* CONFIG_SMP */ /* * storage space for the interrupt stack * * Note: This area is used as the system stack during kernel initialization, * since the kernel hasn't yet set up its own stack areas. The dual purposing * of this area is safe since interrupts are disabled until the kernel context * switches to the init thread. */ K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_interrupt_stacks, CONFIG_MP_MAX_NUM_CPUS, CONFIG_ISR_STACK_SIZE); extern void idle(void *unused1, void *unused2, void *unused3); #ifdef CONFIG_OBJ_CORE_SYSTEM static struct k_obj_type obj_type_cpu; static struct k_obj_type obj_type_kernel; #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM static struct k_obj_core_stats_desc cpu_stats_desc = { .raw_size = sizeof(struct k_cycle_stats), .query_size = sizeof(struct k_thread_runtime_stats), .raw = z_cpu_stats_raw, .query = z_cpu_stats_query, .reset = NULL, .disable = NULL, .enable = NULL, }; static struct k_obj_core_stats_desc kernel_stats_desc = { .raw_size = sizeof(struct k_cycle_stats) * CONFIG_MP_MAX_NUM_CPUS, .query_size = sizeof(struct k_thread_runtime_stats), .raw = z_kernel_stats_raw, .query = z_kernel_stats_query, .reset = NULL, .disable = NULL, .enable = NULL, }; #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */ #endif /* CONFIG_OBJ_CORE_SYSTEM */ /* LCOV_EXCL_START * * This code is called so early in the boot process that code coverage * doesn't work properly. In addition, not all arches call this code, * some like x86 do this with optimized assembly */ /** * @brief equivalent of memset() for early boot usage * * Architectures that can't safely use the regular (optimized) memset very * early during boot because e.g. hardware isn't yet sufficiently initialized * may override this with their own safe implementation. */ __boot_func void __weak z_early_memset(void *dst, int c, size_t n) { (void) memset(dst, c, n); } /** * @brief equivalent of memcpy() for early boot usage * * Architectures that can't safely use the regular (optimized) memcpy very * early during boot because e.g. hardware isn't yet sufficiently initialized * may override this with their own safe implementation. */ __boot_func void __weak z_early_memcpy(void *dst, const void *src, size_t n) { (void) memcpy(dst, src, n); } /** * @brief Clear BSS * * This routine clears the BSS region, so all bytes are 0. */ __boot_func void z_bss_zero(void) { if (IS_ENABLED(CONFIG_SKIP_BSS_CLEAR)) { return; } z_early_memset(__bss_start, 0, __bss_end - __bss_start); #if DT_NODE_HAS_STATUS_OKAY(DT_CHOSEN(zephyr_ccm)) z_early_memset(&__ccm_bss_start, 0, (uintptr_t) &__ccm_bss_end - (uintptr_t) &__ccm_bss_start); #endif #if DT_NODE_HAS_STATUS_OKAY(DT_CHOSEN(zephyr_dtcm)) z_early_memset(&__dtcm_bss_start, 0, (uintptr_t) &__dtcm_bss_end - (uintptr_t) &__dtcm_bss_start); #endif #if DT_NODE_HAS_STATUS_OKAY(DT_CHOSEN(zephyr_ocm)) z_early_memset(&__ocm_bss_start, 0, (uintptr_t) &__ocm_bss_end - (uintptr_t) &__ocm_bss_start); #endif #ifdef CONFIG_CODE_DATA_RELOCATION extern void bss_zeroing_relocation(void); bss_zeroing_relocation(); #endif /* CONFIG_CODE_DATA_RELOCATION */ #ifdef CONFIG_COVERAGE_GCOV z_early_memset(&__gcov_bss_start, 0, ((uintptr_t) &__gcov_bss_end - (uintptr_t) &__gcov_bss_start)); #endif /* CONFIG_COVERAGE_GCOV */ } #ifdef CONFIG_LINKER_USE_BOOT_SECTION /** * @brief Clear BSS within the bot region * * This routine clears the BSS within the boot region. * This is separate from z_bss_zero() as boot region may * contain symbols required for the boot process before * paging is initialized. */ __boot_func void z_bss_zero_boot(void) { z_early_memset(&lnkr_boot_bss_start, 0, (uintptr_t)&lnkr_boot_bss_end - (uintptr_t)&lnkr_boot_bss_start); } #endif /* CONFIG_LINKER_USE_BOOT_SECTION */ #ifdef CONFIG_LINKER_USE_PINNED_SECTION /** * @brief Clear BSS within the pinned region * * This routine clears the BSS within the pinned region. * This is separate from z_bss_zero() as pinned region may * contain symbols required for the boot process before * paging is initialized. */ #ifdef CONFIG_LINKER_USE_BOOT_SECTION __boot_func #else __pinned_func #endif /* CONFIG_LINKER_USE_BOOT_SECTION */ void z_bss_zero_pinned(void) { z_early_memset(&lnkr_pinned_bss_start, 0, (uintptr_t)&lnkr_pinned_bss_end - (uintptr_t)&lnkr_pinned_bss_start); } #endif /* CONFIG_LINKER_USE_PINNED_SECTION */ #ifdef CONFIG_STACK_CANARIES #ifdef CONFIG_STACK_CANARIES_TLS extern Z_THREAD_LOCAL volatile uintptr_t __stack_chk_guard; #else extern volatile uintptr_t __stack_chk_guard; #endif /* CONFIG_STACK_CANARIES_TLS */ #endif /* CONFIG_STACK_CANARIES */ /* LCOV_EXCL_STOP */ __pinned_bss bool z_sys_post_kernel; static int do_device_init(const struct init_entry *entry) { const struct device *dev = entry->dev; int rc = 0; if (entry->init_fn.dev != NULL) { rc = entry->init_fn.dev(dev); /* Mark device initialized. If initialization * failed, record the error condition. */ if (rc != 0) { if (rc < 0) { rc = -rc; } if (rc > UINT8_MAX) { rc = UINT8_MAX; } dev->state->init_res = rc; } } dev->state->initialized = true; if (rc == 0) { /* Run automatic device runtime enablement */ (void)pm_device_runtime_auto_enable(dev); } return rc; } /** * @brief Execute all the init entry initialization functions at a given level * * @details Invokes the initialization routine for each init entry object * created by the INIT_ENTRY_DEFINE() macro using the specified level. * The linker script places the init entry objects in memory in the order * they need to be invoked, with symbols indicating where one level leaves * off and the next one begins. * * @param level init level to run. */ static void z_sys_init_run_level(enum init_level level) { static const struct init_entry *levels[] = { __init_EARLY_start, __init_PRE_KERNEL_1_start, __init_PRE_KERNEL_2_start, __init_POST_KERNEL_start, __init_APPLICATION_start, #ifdef CONFIG_SMP __init_SMP_start, #endif /* CONFIG_SMP */ /* End marker */ __init_end, }; const struct init_entry *entry; for (entry = levels[level]; entry < levels[level+1]; entry++) { const struct device *dev = entry->dev; int result; sys_trace_sys_init_enter(entry, level); if (dev != NULL) { result = do_device_init(entry); } else { result = entry->init_fn.sys(); } sys_trace_sys_init_exit(entry, level, result); } } int z_impl_device_init(const struct device *dev) { if (dev == NULL) { return -ENOENT; } STRUCT_SECTION_FOREACH_ALTERNATE(_deferred_init, init_entry, entry) { if (entry->dev == dev) { return do_device_init(entry); } } return -ENOENT; } #ifdef CONFIG_USERSPACE static inline int z_vrfy_device_init(const struct device *dev) { K_OOPS(K_SYSCALL_OBJ_INIT(dev, K_OBJ_ANY)); return z_impl_device_init(dev); } #include #endif extern void boot_banner(void); #ifdef CONFIG_BOOTARGS extern const char *get_bootargs(void); static char **prepare_main_args(int *argc) { #ifdef CONFIG_DYNAMIC_BOOTARGS const char *bootargs = get_bootargs(); #else const char bootargs[] = CONFIG_BOOTARGS_STRING; #endif /* beginning of the buffer contains argument's strings, end of it contains argvs */ static char args_buf[CONFIG_BOOTARGS_ARGS_BUFFER_SIZE]; char *strings_end = (char *)args_buf; char **argv_begin = (char **)WB_DN( args_buf + CONFIG_BOOTARGS_ARGS_BUFFER_SIZE - sizeof(char *)); int i = 0; *argc = 0; *argv_begin = NULL; #ifdef CONFIG_DYNAMIC_BOOTARGS if (!bootargs) { return argv_begin; } #endif while (1) { while (isspace(bootargs[i])) { i++; } if (bootargs[i] == '\0') { return argv_begin; } if (strings_end + sizeof(char *) >= (char *)argv_begin) { LOG_WRN("not enough space in args buffer to accommodate all bootargs" " - bootargs truncated"); return argv_begin; } argv_begin--; memmove(argv_begin, argv_begin + 1, *argc * sizeof(char *)); argv_begin[*argc] = strings_end; bool quoted = false; if (bootargs[i] == '\"' || bootargs[i] == '\'') { char delimiter = bootargs[i]; for (int j = i + 1; bootargs[j] != '\0'; j++) { if (bootargs[j] == delimiter) { quoted = true; break; } } } if (quoted) { char delimiter = bootargs[i]; i++; /* strip quotes */ while (bootargs[i] != delimiter && strings_end < (char *)argv_begin) { *strings_end++ = bootargs[i++]; } i++; /* strip quotes */ } else { while (!isspace(bootargs[i]) && bootargs[i] != '\0' && strings_end < (char *)argv_begin) { *strings_end++ = bootargs[i++]; } } if (strings_end < (char *)argv_begin) { *strings_end++ = '\0'; } else { LOG_WRN("not enough space in args buffer to accommodate all bootargs" " - bootargs truncated"); argv_begin[*argc] = NULL; return argv_begin; } (*argc)++; } } #endif /** * @brief Mainline for kernel's background thread * * This routine completes kernel initialization by invoking the remaining * init functions, then invokes application's main() routine. */ __boot_func static void bg_thread_main(void *unused1, void *unused2, void *unused3) { ARG_UNUSED(unused1); ARG_UNUSED(unused2); ARG_UNUSED(unused3); #ifdef CONFIG_MMU /* Invoked here such that backing store or eviction algorithms may * initialize kernel objects, and that all POST_KERNEL and later tasks * may perform memory management tasks (except for * k_mem_map_phys_bare() which is allowed at any time) */ z_mem_manage_init(); #endif /* CONFIG_MMU */ z_sys_post_kernel = true; #if CONFIG_IRQ_OFFLOAD arch_irq_offload_init(); #endif z_sys_init_run_level(INIT_LEVEL_POST_KERNEL); #if CONFIG_SOC_LATE_INIT_HOOK soc_late_init_hook(); #endif #if CONFIG_BOARD_LATE_INIT_HOOK board_late_init_hook(); #endif #if defined(CONFIG_STACK_POINTER_RANDOM) && (CONFIG_STACK_POINTER_RANDOM != 0) z_stack_adjust_initialized = 1; #endif /* CONFIG_STACK_POINTER_RANDOM */ boot_banner(); void z_init_static(void); z_init_static(); /* Final init level before app starts */ z_sys_init_run_level(INIT_LEVEL_APPLICATION); z_init_static_threads(); #ifdef CONFIG_KERNEL_COHERENCE __ASSERT_NO_MSG(arch_mem_coherent(&_kernel)); #endif /* CONFIG_KERNEL_COHERENCE */ #ifdef CONFIG_SMP if (!IS_ENABLED(CONFIG_SMP_BOOT_DELAY)) { z_smp_init(); } z_sys_init_run_level(INIT_LEVEL_SMP); #endif /* CONFIG_SMP */ #ifdef CONFIG_MMU z_mem_manage_boot_finish(); #endif /* CONFIG_MMU */ #ifdef CONFIG_BOOTARGS extern int main(int, char **); int argc = 0; char **argv = prepare_main_args(&argc); (void)main(argc, argv); #else extern int main(void); (void)main(); #endif /* CONFIG_BOOTARGS */ /* Mark non-essential since main() has no more work to do */ z_thread_essential_clear(&z_main_thread); #ifdef CONFIG_COVERAGE_DUMP /* Dump coverage data once the main() has exited. */ gcov_coverage_dump(); #endif /* CONFIG_COVERAGE_DUMP */ } /* LCOV_EXCL_LINE ... because we just dumped final coverage data */ #if defined(CONFIG_MULTITHREADING) __boot_func static void init_idle_thread(int i) { struct k_thread *thread = &z_idle_threads[i]; k_thread_stack_t *stack = z_idle_stacks[i]; size_t stack_size = K_KERNEL_STACK_SIZEOF(z_idle_stacks[i]); #ifdef CONFIG_THREAD_NAME #if CONFIG_MP_MAX_NUM_CPUS > 1 char tname[8]; snprintk(tname, 8, "idle %02d", i); #else char *tname = "idle"; #endif /* CONFIG_MP_MAX_NUM_CPUS */ #else char *tname = NULL; #endif /* CONFIG_THREAD_NAME */ z_setup_new_thread(thread, stack, stack_size, idle, &_kernel.cpus[i], NULL, NULL, K_IDLE_PRIO, K_ESSENTIAL, tname); z_mark_thread_as_started(thread); #ifdef CONFIG_SMP thread->base.is_idle = 1U; #endif /* CONFIG_SMP */ } void z_init_cpu(int id) { init_idle_thread(id); _kernel.cpus[id].idle_thread = &z_idle_threads[id]; _kernel.cpus[id].id = id; _kernel.cpus[id].irq_stack = (K_KERNEL_STACK_BUFFER(z_interrupt_stacks[id]) + K_KERNEL_STACK_SIZEOF(z_interrupt_stacks[id])); #ifdef CONFIG_SCHED_THREAD_USAGE_ALL _kernel.cpus[id].usage = &_kernel.usage[id]; _kernel.cpus[id].usage->track_usage = CONFIG_SCHED_THREAD_USAGE_AUTO_ENABLE; #endif #ifdef CONFIG_PM /* * Increment number of CPUs active. The pm subsystem * will keep track of this from here. */ atomic_inc(&_cpus_active); #endif #ifdef CONFIG_OBJ_CORE_SYSTEM k_obj_core_init_and_link(K_OBJ_CORE(&_kernel.cpus[id]), &obj_type_cpu); #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM k_obj_core_stats_register(K_OBJ_CORE(&_kernel.cpus[id]), _kernel.cpus[id].usage, sizeof(struct k_cycle_stats)); #endif #endif } /** * * @brief Initializes kernel data structures * * This routine initializes various kernel data structures, including * the init and idle threads and any architecture-specific initialization. * * Note that all fields of "_kernel" are set to zero on entry, which may * be all the initialization many of them require. * * @return initial stack pointer for the main thread */ __boot_func static char *prepare_multithreading(void) { char *stack_ptr; /* _kernel.ready_q is all zeroes */ z_sched_init(); #ifndef CONFIG_SMP /* * prime the cache with the main thread since: * * - the cache can never be NULL * - the main thread will be the one to run first * - no other thread is initialized yet and thus their priority fields * contain garbage, which would prevent the cache loading algorithm * to work as intended */ _kernel.ready_q.cache = &z_main_thread; #endif /* CONFIG_SMP */ stack_ptr = z_setup_new_thread(&z_main_thread, z_main_stack, K_THREAD_STACK_SIZEOF(z_main_stack), bg_thread_main, NULL, NULL, NULL, CONFIG_MAIN_THREAD_PRIORITY, K_ESSENTIAL, "main"); z_mark_thread_as_started(&z_main_thread); z_ready_thread(&z_main_thread); z_init_cpu(0); return stack_ptr; } __boot_func static FUNC_NORETURN void switch_to_main_thread(char *stack_ptr) { #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN arch_switch_to_main_thread(&z_main_thread, stack_ptr, bg_thread_main); #else ARG_UNUSED(stack_ptr); /* * Context switch to main task (entry function is _main()): the * current fake thread is not on a wait queue or ready queue, so it * will never be rescheduled in. */ z_swap_unlocked(); #endif /* CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN */ CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ } #endif /* CONFIG_MULTITHREADING */ __boot_func void __weak z_early_rand_get(uint8_t *buf, size_t length) { static uint64_t state = (uint64_t)CONFIG_TIMER_RANDOM_INITIAL_STATE; int rc; #ifdef CONFIG_ENTROPY_HAS_DRIVER const struct device *const entropy = DEVICE_DT_GET_OR_NULL(DT_CHOSEN(zephyr_entropy)); if ((entropy != NULL) && device_is_ready(entropy)) { /* Try to see if driver provides an ISR-specific API */ rc = entropy_get_entropy_isr(entropy, buf, length, ENTROPY_BUSYWAIT); if (rc > 0) { length -= rc; buf += rc; } } #endif /* CONFIG_ENTROPY_HAS_DRIVER */ while (length > 0) { uint32_t val; state = state + k_cycle_get_32(); state = state * 2862933555777941757ULL + 3037000493ULL; val = (uint32_t)(state >> 32); rc = MIN(length, sizeof(val)); z_early_memcpy((void *)buf, &val, rc); length -= rc; buf += rc; } } /** * * @brief Initialize kernel * * This routine is invoked when the system is ready to run C code. The * processor must be running in 32-bit mode, and the BSS must have been * cleared/zeroed. * * @return Does not return */ __boot_func FUNC_NO_STACK_PROTECTOR FUNC_NORETURN void z_cstart(void) { /* gcov hook needed to get the coverage report.*/ gcov_static_init(); /* initialize early init calls */ z_sys_init_run_level(INIT_LEVEL_EARLY); /* perform any architecture-specific initialization */ arch_kernel_init(); LOG_CORE_INIT(); #if defined(CONFIG_MULTITHREADING) z_dummy_thread_init(&_thread_dummy); #endif /* CONFIG_MULTITHREADING */ /* do any necessary initialization of static devices */ z_device_state_init(); #if CONFIG_SOC_EARLY_INIT_HOOK soc_early_init_hook(); #endif #if CONFIG_BOARD_EARLY_INIT_HOOK board_early_init_hook(); #endif /* perform basic hardware initialization */ z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_1); #if defined(CONFIG_SMP) arch_smp_init(); #endif z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_2); #ifdef CONFIG_STACK_CANARIES uintptr_t stack_guard; z_early_rand_get((uint8_t *)&stack_guard, sizeof(stack_guard)); __stack_chk_guard = stack_guard; __stack_chk_guard <<= 8; #endif /* CONFIG_STACK_CANARIES */ #ifdef CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT timing_init(); timing_start(); #endif /* CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT */ #ifdef CONFIG_MULTITHREADING switch_to_main_thread(prepare_multithreading()); #else #ifdef ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING /* Custom ARCH-specific routine to switch to main() * in the case of no multi-threading. */ ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING(bg_thread_main, NULL, NULL, NULL); #else bg_thread_main(NULL, NULL, NULL); /* LCOV_EXCL_START * We've already dumped coverage data at this point. */ irq_lock(); while (true) { } /* LCOV_EXCL_STOP */ #endif /* ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING */ #endif /* CONFIG_MULTITHREADING */ /* * Compiler can't tell that the above routines won't return and issues * a warning unless we explicitly tell it that control never gets this * far. */ CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ } #ifdef CONFIG_OBJ_CORE_SYSTEM static int init_cpu_obj_core_list(void) { /* Initialize CPU object type */ z_obj_type_init(&obj_type_cpu, K_OBJ_TYPE_CPU_ID, offsetof(struct _cpu, obj_core)); #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM k_obj_type_stats_init(&obj_type_cpu, &cpu_stats_desc); #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */ return 0; } static int init_kernel_obj_core_list(void) { /* Initialize kernel object type */ z_obj_type_init(&obj_type_kernel, K_OBJ_TYPE_KERNEL_ID, offsetof(struct z_kernel, obj_core)); #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM k_obj_type_stats_init(&obj_type_kernel, &kernel_stats_desc); #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */ k_obj_core_init_and_link(K_OBJ_CORE(&_kernel), &obj_type_kernel); #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM k_obj_core_stats_register(K_OBJ_CORE(&_kernel), _kernel.usage, sizeof(_kernel.usage)); #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */ return 0; } SYS_INIT(init_cpu_obj_core_list, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); SYS_INIT(init_kernel_obj_core_list, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); #endif /* CONFIG_OBJ_CORE_SYSTEM */