/* * Copyright (c) 2010-2015 Wind River Systems, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @brief Nanokernel fixed-size stack object * * This module provides the nanokernel stack object implementation, including * the following APIs: * * nano_stack_init * nano_fiber_stack_push, nano_task_stack_push, nano_isr_stack_push * nano_fiber_stack_pop, nano_task_stack_pop, nano_isr_stack_pop * * @param stack the stack to initialize * @param data pointer to the container for the stack * * @internal * In some cases the compiler "alias" attribute is used to map two or more * APIs to the same function, since they have identical implementations. * @endinternal * */ #include #include #include void nano_stack_init(struct nano_stack *stack, uint32_t *data) { stack->next = stack->base = data; stack->fiber = (struct tcs *)0; } FUNC_ALIAS(_stack_push_non_preemptible, nano_isr_stack_push, void); FUNC_ALIAS(_stack_push_non_preemptible, nano_fiber_stack_push, void); /** * * @brief Push data onto a stack (no context switch) * * This routine pushes a data item onto a stack object; it may be called from * either a fiber or ISR context. A fiber pending on the stack object will be * made ready, but will NOT be scheduled to execute. * * @param stack Stack on which to interact * @param data Data to push on stack * @return N/A * * @internal * This function is capable of supporting invocations from both a fiber and an * ISR context. However, the nano_isr_stack_push and nano_fiber_stack_push * aliases are created to support any required implementation differences in * the future without introducing a source code migration issue. * @endinternal */ void _stack_push_non_preemptible(struct nano_stack *stack, uint32_t data) { struct tcs *tcs; unsigned int imask; imask = irq_lock(); tcs = stack->fiber; if (tcs) { stack->fiber = 0; fiberRtnValueSet(tcs, data); _nano_fiber_ready(tcs); } else { *(stack->next) = data; stack->next++; } irq_unlock(imask); } void nano_task_stack_push(struct nano_stack *stack, uint32_t data) { struct tcs *tcs; unsigned int imask; imask = irq_lock(); tcs = stack->fiber; if (tcs) { stack->fiber = 0; fiberRtnValueSet(tcs, data); _nano_fiber_ready(tcs); _Swap(imask); return; } *(stack->next) = data; stack->next++; irq_unlock(imask); } void nano_stack_push(struct nano_stack *stack, uint32_t data) { static void (*func[3])(struct nano_stack *, uint32_t) = { nano_isr_stack_push, nano_fiber_stack_push, nano_task_stack_push }; func[sys_execution_context_type_get()](stack, data); } FUNC_ALIAS(_stack_pop, nano_isr_stack_pop, int); FUNC_ALIAS(_stack_pop, nano_fiber_stack_pop, int); /** * * @brief Pop data from a nanokernel stack * * Pop the first data word from a nanokernel stack object; it may be called * from either a fiber or ISR context. * * If the stack is not empty, a data word is popped and copied to the provided * address and a non-zero value is returned. If the stack is empty, * it waits until data is ready. * * @param stack Stack to operate on * @param pData Container for data to pop * @param timeout_in_ticks Affects the action taken should the stack be empty. * If TICKS_NONE, then return immediately. If TICKS_UNLIMITED, then wait as * long as necessary. No other value is currently supported as this routine * does not support CONFIG_NANO_TIMEOUTS. * * @return 1 popped data from the stack; 0 otherwise */ int _stack_pop(struct nano_stack *stack, uint32_t *pData, int32_t timeout_in_ticks) { unsigned int imask; imask = irq_lock(); if (likely(stack->next > stack->base)) { stack->next--; *pData = *(stack->next); irq_unlock(imask); return 1; } if (timeout_in_ticks != TICKS_NONE) { stack->fiber = _nanokernel.current; *pData = (uint32_t) _Swap(imask); return 1; } irq_unlock(imask); return 0; } int nano_task_stack_pop(struct nano_stack *stack, uint32_t *pData, int32_t timeout_in_ticks) { unsigned int imask; imask = irq_lock(); while (1) { /* * Predict that the branch will be taken to break out of the loop. * There is little cost to a misprediction since that leads to idle. */ if (likely(stack->next > stack->base)) { stack->next--; *pData = *(stack->next); irq_unlock(imask); return 1; } if (timeout_in_ticks == TICKS_NONE) { break; } /* * Invoke nano_cpu_atomic_idle() with interrupts still disabled to * prevent the scenario where an interrupt fires after re-enabling * interrupts and before executing the "halt" instruction. If the * ISR performs a nano_isr_stack_push() on the same stack object, * the subsequent execution of the "halt" instruction will result * in the queued data being ignored until the next interrupt, if * any. * * Thus it should be clear that an architectures implementation * of nano_cpu_atomic_idle() must be able to atomically re-enable * interrupts and enter a low-power mode. * * This explanation is valid for all nanokernel objects: stacks, * FIFOs, LIFOs, and semaphores, for their * nano_task__() routines. */ nano_cpu_atomic_idle(imask); imask = irq_lock(); } irq_unlock(imask); return 0; } int nano_stack_pop(struct nano_stack *stack, uint32_t *pData, int32_t timeout_in_ticks) { static int (*func[3])(struct nano_stack *, uint32_t *, int32_t) = { nano_isr_stack_pop, nano_fiber_stack_pop, nano_task_stack_pop, }; return func[sys_execution_context_type_get()](stack, pData, timeout_in_ticks); }