/* MCUX Ethernet Driver * * Copyright (c) 2016 ARM Ltd * Copyright (c) 2016 Linaro Ltd * * SPDX-License-Identifier: Apache-2.0 */ /* The driver performs one shot PHY setup. There is no support for * PHY disconnect, reconnect or configuration change. The PHY setup, * implemented via MCUX contains polled code that can block the * initialization thread for a few seconds. * * There is no statistics collection for either normal operation or * error behaviour. */ #define SYS_LOG_DOMAIN "dev/eth_mcux" #define SYS_LOG_LEVEL SYS_LOG_LEVEL_DEBUG #include #include #include #include #include #include #include #include "fsl_enet.h" #include "fsl_phy.h" #include "fsl_port.h" struct eth_context { struct net_if *iface; enet_handle_t enet_handle; struct k_sem tx_buf_sem; uint8_t mac_addr[6]; /* TODO: FIXME. This Ethernet frame sized buffer is used for * interfacing with MCUX. How it works is that hardware uses * DMA scatter buffers to receive a frame, and then public * MCUX call gathers them into this buffer (there's no other * public interface). All this happens only for this driver * to scatter this buffer again into Zephyr fragment buffers. * This is not efficient, but proper resolution of this issue * depends on introduction of zero-copy networking support * in Zephyr, and adding needed interface to MCUX (or * bypassing it and writing a more complex driver working * directly with hardware). */ uint8_t frame_buf[1500]; }; static void eth_0_config_func(void); static enet_rx_bd_struct_t __aligned(ENET_BUFF_ALIGNMENT) rx_buffer_desc[CONFIG_ETH_MCUX_TX_BUFFERS]; static enet_tx_bd_struct_t __aligned(ENET_BUFF_ALIGNMENT) tx_buffer_desc[CONFIG_ETH_MCUX_TX_BUFFERS]; /* Use ENET_FRAME_MAX_VALNFRAMELEN for VLAN frame size * Use ENET_FRAME_MAX_FRAMELEN for ethernet frame size */ #define ETH_MCUX_BUFFER_SIZE \ ROUND_UP(ENET_FRAME_MAX_VALNFRAMELEN, ENET_BUFF_ALIGNMENT) static uint8_t __aligned(ENET_BUFF_ALIGNMENT) rx_buffer[CONFIG_ETH_MCUX_RX_BUFFERS][ETH_MCUX_BUFFER_SIZE]; static uint8_t __aligned(ENET_BUFF_ALIGNMENT) tx_buffer[CONFIG_ETH_MCUX_TX_BUFFERS][ETH_MCUX_BUFFER_SIZE]; static int eth_tx(struct net_if *iface, struct net_buf *buf) { struct eth_context *context = iface->dev->driver_data; const struct net_buf *frag; uint8_t *dst; status_t status; unsigned int imask; uint16_t total_len = net_nbuf_ll_reserve(buf) + net_buf_frags_len(buf); k_sem_take(&context->tx_buf_sem, K_FOREVER); /* As context->frame_buf is shared resource used by both eth_tx * and eth_rx, we need to protect it with irq_lock. */ imask = irq_lock(); /* Gather fragment buffers into flat Ethernet frame buffer * which can be fed to MCUX Ethernet functions. First * fragment is special - it contains link layer (Ethernet * in our case) headers and must be treated specially. */ dst = context->frame_buf; memcpy(dst, net_nbuf_ll(buf), net_nbuf_ll_reserve(buf) + buf->frags->len); dst += net_nbuf_ll_reserve(buf) + buf->frags->len; /* Continue with the rest of fragments (which contain only data) */ frag = buf->frags->frags; while (frag) { memcpy(dst, frag->data, frag->len); dst += frag->len; frag = frag->frags; } status = ENET_SendFrame(ENET, &context->enet_handle, context->frame_buf, total_len); irq_unlock(imask); if (status) { SYS_LOG_ERR("ENET_SendFrame error: %d\n", status); return -1; } net_nbuf_unref(buf); return 0; } static void eth_rx(struct device *iface) { struct eth_context *context = iface->driver_data; struct net_buf *buf, *prev_frag; const uint8_t *src; uint32_t frame_length = 0; status_t status; unsigned int imask; status = ENET_GetRxFrameSize(&context->enet_handle, &frame_length); if (status) { enet_data_error_stats_t error_stats; SYS_LOG_ERR("ENET_GetRxFrameSize return: %d", status); ENET_GetRxErrBeforeReadFrame(&context->enet_handle, &error_stats); /* Flush the current read buffer. This operation can * only report failure if there is no frame to flush, * which cannot happen in this context. */ status = ENET_ReadFrame(ENET, &context->enet_handle, NULL, 0); assert(status == kStatus_Success); return; } buf = net_nbuf_get_reserve_rx(0); if (!buf) { /* We failed to get a receive buffer. We don't add * any further logging here because the allocator * issued a diagnostic when it failed to allocate. * * Flush the current read buffer. This operation can * only report failure if there is no frame to flush, * which cannot happen in this context. */ status = ENET_ReadFrame(ENET, &context->enet_handle, NULL, 0); assert(status == kStatus_Success); return; } if (sizeof(context->frame_buf) < frame_length) { SYS_LOG_ERR("frame too large (%d)\n", frame_length); net_buf_unref(buf); status = ENET_ReadFrame(ENET, &context->enet_handle, NULL, 0); assert(status == kStatus_Success); return; } /* As context->frame_buf is shared resource used by both eth_tx * and eth_rx, we need to protect it with irq_lock. */ imask = irq_lock(); status = ENET_ReadFrame(ENET, &context->enet_handle, context->frame_buf, frame_length); if (status) { irq_unlock(imask); SYS_LOG_ERR("ENET_ReadFrame failed: %d\n", status); net_buf_unref(buf); return; } src = context->frame_buf; prev_frag = buf; do { struct net_buf *pkt_buf; size_t frag_len; pkt_buf = net_nbuf_get_reserve_data(0); if (!pkt_buf) { irq_unlock(imask); SYS_LOG_ERR("Failed to get fragment buf\n"); net_buf_unref(buf); assert(status == kStatus_Success); return; } net_buf_frag_insert(prev_frag, pkt_buf); prev_frag = pkt_buf; frag_len = net_buf_tailroom(pkt_buf); if (frag_len > frame_length) { frag_len = frame_length; } memcpy(pkt_buf->data, src, frag_len); net_buf_add(pkt_buf, frag_len); src += frag_len; frame_length -= frag_len; } while (frame_length > 0); irq_unlock(imask); net_recv_data(context->iface, buf); } static void eth_callback(ENET_Type *base, enet_handle_t *handle, enet_event_t event, void *param) { struct device *iface = param; struct eth_context *context = iface->driver_data; switch (event) { case kENET_RxEvent: eth_rx(iface); break; case kENET_TxEvent: /* Free the TX buffer. */ k_sem_give(&context->tx_buf_sem); break; case kENET_ErrEvent: /* Error event: BABR/BABT/EBERR/LC/RL/UN/PLR. */ break; case kENET_WakeUpEvent: /* Wake up from sleep mode event. */ break; #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE case kENET_TimeStampEvent: /* Time stamp event. */ break; case kENET_TimeStampAvailEvent: /* Time stamp available event. */ break; #endif } } #if defined(CONFIG_ETH_MCUX_0_RANDOM_MAC) static void generate_mac(uint8_t *mac_addr) { uint32_t entropy; entropy = sys_rand32_get(); mac_addr[3] = entropy >> 8; mac_addr[4] = entropy >> 16; /* Locally administered, unicast */ mac_addr[5] = ((entropy >> 0) & 0xfc) | 0x02; } #endif static int eth_0_init(struct device *dev) { struct eth_context *context = dev->driver_data; enet_config_t enet_config; uint32_t sys_clock; const uint32_t phy_addr = 0x0; bool link; status_t status; enet_buffer_config_t buffer_config = { .rxBdNumber = CONFIG_ETH_MCUX_RX_BUFFERS, .txBdNumber = CONFIG_ETH_MCUX_TX_BUFFERS, .rxBuffSizeAlign = ETH_MCUX_BUFFER_SIZE, .txBuffSizeAlign = ETH_MCUX_BUFFER_SIZE, .rxBdStartAddrAlign = rx_buffer_desc, .txBdStartAddrAlign = tx_buffer_desc, .rxBufferAlign = rx_buffer[0], .txBufferAlign = tx_buffer[0], }; k_sem_init(&context->tx_buf_sem, CONFIG_ETH_MCUX_TX_BUFFERS, CONFIG_ETH_MCUX_TX_BUFFERS); sys_clock = CLOCK_GetFreq(kCLOCK_CoreSysClk); ENET_GetDefaultConfig(&enet_config); enet_config.interrupt |= kENET_RxFrameInterrupt; enet_config.interrupt |= kENET_TxFrameInterrupt; status = PHY_Init(ENET, phy_addr, sys_clock); if (status) { SYS_LOG_ERR("PHY_Init() failed: %d", status); return 1; } PHY_GetLinkStatus(ENET, phy_addr, &link); if (link) { phy_speed_t phy_speed; phy_duplex_t phy_duplex; PHY_GetLinkSpeedDuplex(ENET, phy_addr, &phy_speed, &phy_duplex); enet_config.miiSpeed = (enet_mii_speed_t) phy_speed; enet_config.miiDuplex = (enet_mii_duplex_t) phy_duplex; SYS_LOG_INF("Enabled %dM %s-duplex mode.", (phy_speed ? 100 : 10), (phy_duplex ? "full" : "half")); } else { SYS_LOG_INF("Link down."); } #if defined(CONFIG_ETH_MCUX_0_RANDOM_MAC) generate_mac(context->mac_addr); #endif ENET_Init(ENET, &context->enet_handle, &enet_config, &buffer_config, context->mac_addr, sys_clock); SYS_LOG_DBG("MAC %02x:%02x:%02x:%02x:%02x:%02x", context->mac_addr[0], context->mac_addr[1], context->mac_addr[2], context->mac_addr[3], context->mac_addr[4], context->mac_addr[5]); ENET_SetCallback(&context->enet_handle, eth_callback, dev); eth_0_config_func(); ENET_ActiveRead(ENET); return 0; } static void eth_0_iface_init(struct net_if *iface) { struct device *dev = net_if_get_device(iface); struct eth_context *context = dev->driver_data; net_if_set_link_addr(iface, context->mac_addr, sizeof(context->mac_addr)); context->iface = iface; } static struct net_if_api api_funcs_0 = { .init = eth_0_iface_init, .send = eth_tx, }; static void eth_mcux_rx_isr(void *p) { struct device *dev = p; struct eth_context *context = dev->driver_data; ENET_ReceiveIRQHandler(ENET, &context->enet_handle); } static void eth_mcux_tx_isr(void *p) { struct device *dev = p; struct eth_context *context = dev->driver_data; ENET_TransmitIRQHandler(ENET, &context->enet_handle); } static void eth_mcux_error_isr(void *p) { struct device *dev = p; struct eth_context *context = dev->driver_data; ENET_ErrorIRQHandler(ENET, &context->enet_handle); } static struct eth_context eth_0_context = { .mac_addr = { /* Freescale's OUI */ 0x00, 0x04, 0x9f, #if !defined(CONFIG_ETH_MCUX_0_RANDOM_MAC) CONFIG_ETH_MCUX_0_MAC3, CONFIG_ETH_MCUX_0_MAC4, CONFIG_ETH_MCUX_0_MAC5 #endif } }; NET_DEVICE_INIT(eth_mcux_0, CONFIG_ETH_MCUX_0_NAME, eth_0_init, ð_0_context, NULL, CONFIG_ETH_INIT_PRIORITY, &api_funcs_0, ETHERNET_L2, NET_L2_GET_CTX_TYPE(ETHERNET_L2), 1500); static void eth_0_config_func(void) { IRQ_CONNECT(IRQ_ETH_RX, CONFIG_ETH_MCUX_0_IRQ_PRI, eth_mcux_rx_isr, DEVICE_GET(eth_mcux_0), 0); irq_enable(IRQ_ETH_RX); IRQ_CONNECT(IRQ_ETH_TX, CONFIG_ETH_MCUX_0_IRQ_PRI, eth_mcux_tx_isr, DEVICE_GET(eth_mcux_0), 0); irq_enable(IRQ_ETH_TX); IRQ_CONNECT(IRQ_ETH_ERR_MISC, CONFIG_ETH_MCUX_0_IRQ_PRI, eth_mcux_error_isr, DEVICE_GET(eth_mcux_0), 0); irq_enable(IRQ_ETH_ERR_MISC); }