/* buf.c - Buffer management */ /* * Copyright (c) 2015-2019 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #define LOG_MODULE_NAME net_buf #define LOG_LEVEL CONFIG_NET_BUF_LOG_LEVEL #include LOG_MODULE_REGISTER(LOG_MODULE_NAME); #include #include #include #include #include #include #if defined(CONFIG_NET_BUF_LOG) #define NET_BUF_DBG(fmt, ...) LOG_DBG("(%p) " fmt, k_current_get(), \ ##__VA_ARGS__) #define NET_BUF_ERR(fmt, ...) LOG_ERR(fmt, ##__VA_ARGS__) #define NET_BUF_WARN(fmt, ...) LOG_WRN(fmt, ##__VA_ARGS__) #define NET_BUF_INFO(fmt, ...) LOG_INF(fmt, ##__VA_ARGS__) #else #define NET_BUF_DBG(fmt, ...) #define NET_BUF_ERR(fmt, ...) #define NET_BUF_WARN(fmt, ...) #define NET_BUF_INFO(fmt, ...) #endif /* CONFIG_NET_BUF_LOG */ #define NET_BUF_ASSERT(cond, ...) __ASSERT(cond, "" __VA_ARGS__) #if CONFIG_NET_BUF_WARN_ALLOC_INTERVAL > 0 #define WARN_ALLOC_INTERVAL K_SECONDS(CONFIG_NET_BUF_WARN_ALLOC_INTERVAL) #else #define WARN_ALLOC_INTERVAL K_FOREVER #endif /* Linker-defined symbol bound to the static pool structs */ STRUCT_SECTION_START_EXTERN(net_buf_pool); struct net_buf_pool *net_buf_pool_get(int id) { struct net_buf_pool *pool; STRUCT_SECTION_GET(net_buf_pool, id, &pool); return pool; } static int pool_id(struct net_buf_pool *pool) { return pool - TYPE_SECTION_START(net_buf_pool); } int net_buf_id(const struct net_buf *buf) { struct net_buf_pool *pool = net_buf_pool_get(buf->pool_id); size_t struct_size = ROUND_UP(sizeof(struct net_buf) + pool->user_data_size, __alignof__(struct net_buf)); ptrdiff_t offset = (uint8_t *)buf - (uint8_t *)pool->__bufs; return offset / struct_size; } static inline struct net_buf *pool_get_uninit(struct net_buf_pool *pool, uint16_t uninit_count) { size_t struct_size = ROUND_UP(sizeof(struct net_buf) + pool->user_data_size, __alignof__(struct net_buf)); size_t byte_offset = (pool->buf_count - uninit_count) * struct_size; struct net_buf *buf; buf = (struct net_buf *)(((uint8_t *)pool->__bufs) + byte_offset); buf->pool_id = pool_id(pool); buf->user_data_size = pool->user_data_size; return buf; } void net_buf_reset(struct net_buf *buf) { __ASSERT_NO_MSG(buf->flags == 0U); __ASSERT_NO_MSG(buf->frags == NULL); net_buf_simple_reset(&buf->b); } static uint8_t *generic_data_ref(struct net_buf *buf, uint8_t *data) { uint8_t *ref_count; ref_count = data - sizeof(void *); (*ref_count)++; return data; } static uint8_t *mem_pool_data_alloc(struct net_buf *buf, size_t *size, k_timeout_t timeout) { struct net_buf_pool *buf_pool = net_buf_pool_get(buf->pool_id); struct k_heap *pool = buf_pool->alloc->alloc_data; uint8_t *ref_count; /* Reserve extra space for a ref-count (uint8_t) */ void *b = k_heap_alloc(pool, sizeof(void *) + *size, timeout); if (b == NULL) { return NULL; } ref_count = (uint8_t *)b; *ref_count = 1U; /* Return pointer to the byte following the ref count */ return ref_count + sizeof(void *); } static void mem_pool_data_unref(struct net_buf *buf, uint8_t *data) { struct net_buf_pool *buf_pool = net_buf_pool_get(buf->pool_id); struct k_heap *pool = buf_pool->alloc->alloc_data; uint8_t *ref_count; ref_count = data - sizeof(void *); if (--(*ref_count)) { return; } /* Need to copy to local variable due to alignment */ k_heap_free(pool, ref_count); } const struct net_buf_data_cb net_buf_var_cb = { .alloc = mem_pool_data_alloc, .ref = generic_data_ref, .unref = mem_pool_data_unref, }; static uint8_t *fixed_data_alloc(struct net_buf *buf, size_t *size, k_timeout_t timeout) { struct net_buf_pool *pool = net_buf_pool_get(buf->pool_id); const struct net_buf_pool_fixed *fixed = pool->alloc->alloc_data; *size = pool->alloc->max_alloc_size; return fixed->data_pool + *size * net_buf_id(buf); } static void fixed_data_unref(struct net_buf *buf, uint8_t *data) { /* Nothing needed for fixed-size data pools */ } const struct net_buf_data_cb net_buf_fixed_cb = { .alloc = fixed_data_alloc, .unref = fixed_data_unref, }; #if (K_HEAP_MEM_POOL_SIZE > 0) static uint8_t *heap_data_alloc(struct net_buf *buf, size_t *size, k_timeout_t timeout) { uint8_t *ref_count; ref_count = k_malloc(sizeof(void *) + *size); if (!ref_count) { return NULL; } *ref_count = 1U; return ref_count + sizeof(void *); } static void heap_data_unref(struct net_buf *buf, uint8_t *data) { uint8_t *ref_count; ref_count = data - sizeof(void *); if (--(*ref_count)) { return; } k_free(ref_count); } static const struct net_buf_data_cb net_buf_heap_cb = { .alloc = heap_data_alloc, .ref = generic_data_ref, .unref = heap_data_unref, }; const struct net_buf_data_alloc net_buf_heap_alloc = { .cb = &net_buf_heap_cb, .max_alloc_size = 0, }; #endif /* K_HEAP_MEM_POOL_SIZE > 0 */ static uint8_t *data_alloc(struct net_buf *buf, size_t *size, k_timeout_t timeout) { struct net_buf_pool *pool = net_buf_pool_get(buf->pool_id); return pool->alloc->cb->alloc(buf, size, timeout); } static uint8_t *data_ref(struct net_buf *buf, uint8_t *data) { struct net_buf_pool *pool = net_buf_pool_get(buf->pool_id); return pool->alloc->cb->ref(buf, data); } #if defined(CONFIG_NET_BUF_LOG) struct net_buf *net_buf_alloc_len_debug(struct net_buf_pool *pool, size_t size, k_timeout_t timeout, const char *func, int line) #else struct net_buf *net_buf_alloc_len(struct net_buf_pool *pool, size_t size, k_timeout_t timeout) #endif { k_timepoint_t end = sys_timepoint_calc(timeout); struct net_buf *buf; k_spinlock_key_t key; __ASSERT_NO_MSG(pool); NET_BUF_DBG("%s():%d: pool %p size %zu", func, line, pool, size); /* We need to prevent race conditions * when accessing pool->uninit_count. */ key = k_spin_lock(&pool->lock); /* If there are uninitialized buffers we're guaranteed to succeed * with the allocation one way or another. */ if (pool->uninit_count) { uint16_t uninit_count; /* If this is not the first access to the pool, we can * be opportunistic and try to fetch a previously used * buffer from the LIFO with K_NO_WAIT. */ if (pool->uninit_count < pool->buf_count) { buf = k_lifo_get(&pool->free, K_NO_WAIT); if (buf) { k_spin_unlock(&pool->lock, key); goto success; } } uninit_count = pool->uninit_count--; k_spin_unlock(&pool->lock, key); buf = pool_get_uninit(pool, uninit_count); goto success; } k_spin_unlock(&pool->lock, key); if (!K_TIMEOUT_EQ(timeout, K_NO_WAIT) && k_current_get() == k_work_queue_thread_get(&k_sys_work_q)) { LOG_DBG("Timeout discarded. No blocking in syswq"); timeout = K_NO_WAIT; } #if defined(CONFIG_NET_BUF_LOG) && (CONFIG_NET_BUF_LOG_LEVEL >= LOG_LEVEL_WRN) if (K_TIMEOUT_EQ(timeout, K_FOREVER)) { uint32_t ref = k_uptime_get_32(); buf = k_lifo_get(&pool->free, K_NO_WAIT); while (!buf) { #if defined(CONFIG_NET_BUF_POOL_USAGE) NET_BUF_WARN("%s():%d: Pool %s low on buffers.", func, line, pool->name); #else NET_BUF_WARN("%s():%d: Pool %p low on buffers.", func, line, pool); #endif buf = k_lifo_get(&pool->free, WARN_ALLOC_INTERVAL); #if defined(CONFIG_NET_BUF_POOL_USAGE) NET_BUF_WARN("%s():%d: Pool %s blocked for %u secs", func, line, pool->name, (k_uptime_get_32() - ref) / MSEC_PER_SEC); #else NET_BUF_WARN("%s():%d: Pool %p blocked for %u secs", func, line, pool, (k_uptime_get_32() - ref) / MSEC_PER_SEC); #endif } } else { buf = k_lifo_get(&pool->free, timeout); } #else buf = k_lifo_get(&pool->free, timeout); #endif if (!buf) { NET_BUF_ERR("%s():%d: Failed to get free buffer", func, line); return NULL; } success: NET_BUF_DBG("allocated buf %p", buf); if (size) { #if __ASSERT_ON size_t req_size = size; #endif timeout = sys_timepoint_timeout(end); buf->__buf = data_alloc(buf, &size, timeout); if (!buf->__buf) { NET_BUF_ERR("%s():%d: Failed to allocate data", func, line); net_buf_destroy(buf); return NULL; } #if __ASSERT_ON NET_BUF_ASSERT(req_size <= size); #endif } else { buf->__buf = NULL; } buf->ref = 1U; buf->flags = 0U; buf->frags = NULL; buf->size = size; memset(buf->user_data, 0, buf->user_data_size); net_buf_reset(buf); #if defined(CONFIG_NET_BUF_POOL_USAGE) atomic_dec(&pool->avail_count); __ASSERT_NO_MSG(atomic_get(&pool->avail_count) >= 0); #endif return buf; } #if defined(CONFIG_NET_BUF_LOG) struct net_buf *net_buf_alloc_fixed_debug(struct net_buf_pool *pool, k_timeout_t timeout, const char *func, int line) { return net_buf_alloc_len_debug(pool, pool->alloc->max_alloc_size, timeout, func, line); } #else struct net_buf *net_buf_alloc_fixed(struct net_buf_pool *pool, k_timeout_t timeout) { return net_buf_alloc_len(pool, pool->alloc->max_alloc_size, timeout); } #endif #if defined(CONFIG_NET_BUF_LOG) struct net_buf *net_buf_alloc_with_data_debug(struct net_buf_pool *pool, void *data, size_t size, k_timeout_t timeout, const char *func, int line) #else struct net_buf *net_buf_alloc_with_data(struct net_buf_pool *pool, void *data, size_t size, k_timeout_t timeout) #endif { struct net_buf *buf; #if defined(CONFIG_NET_BUF_LOG) buf = net_buf_alloc_len_debug(pool, 0, timeout, func, line); #else buf = net_buf_alloc_len(pool, 0, timeout); #endif if (!buf) { return NULL; } net_buf_simple_init_with_data(&buf->b, data, size); buf->flags = NET_BUF_EXTERNAL_DATA; return buf; } #if defined(CONFIG_NET_BUF_LOG) struct net_buf *net_buf_get_debug(struct k_fifo *fifo, k_timeout_t timeout, const char *func, int line) #else struct net_buf *net_buf_get(struct k_fifo *fifo, k_timeout_t timeout) #endif { struct net_buf *buf; NET_BUF_DBG("%s():%d: fifo %p", func, line, fifo); buf = k_fifo_get(fifo, timeout); if (!buf) { return NULL; } NET_BUF_DBG("%s():%d: buf %p fifo %p", func, line, buf, fifo); return buf; } static struct k_spinlock net_buf_slist_lock; void net_buf_slist_put(sys_slist_t *list, struct net_buf *buf) { k_spinlock_key_t key; __ASSERT_NO_MSG(list); __ASSERT_NO_MSG(buf); key = k_spin_lock(&net_buf_slist_lock); sys_slist_append(list, &buf->node); k_spin_unlock(&net_buf_slist_lock, key); } struct net_buf *net_buf_slist_get(sys_slist_t *list) { struct net_buf *buf; k_spinlock_key_t key; __ASSERT_NO_MSG(list); key = k_spin_lock(&net_buf_slist_lock); buf = (void *)sys_slist_get(list); k_spin_unlock(&net_buf_slist_lock, key); return buf; } void net_buf_put(struct k_fifo *fifo, struct net_buf *buf) { __ASSERT_NO_MSG(fifo); __ASSERT_NO_MSG(buf); k_fifo_put(fifo, buf); } #if defined(CONFIG_NET_BUF_LOG) void net_buf_unref_debug(struct net_buf *buf, const char *func, int line) #else void net_buf_unref(struct net_buf *buf) #endif { __ASSERT_NO_MSG(buf); while (buf) { struct net_buf *frags = buf->frags; struct net_buf_pool *pool; #if defined(CONFIG_NET_BUF_LOG) if (!buf->ref) { NET_BUF_ERR("%s():%d: buf %p double free", func, line, buf); return; } #endif NET_BUF_DBG("buf %p ref %u pool_id %u frags %p", buf, buf->ref, buf->pool_id, buf->frags); if (--buf->ref > 0) { return; } buf->data = NULL; buf->frags = NULL; pool = net_buf_pool_get(buf->pool_id); #if defined(CONFIG_NET_BUF_POOL_USAGE) atomic_inc(&pool->avail_count); __ASSERT_NO_MSG(atomic_get(&pool->avail_count) <= pool->buf_count); #endif if (pool->destroy) { pool->destroy(buf); } else { net_buf_destroy(buf); } buf = frags; } } struct net_buf *net_buf_ref(struct net_buf *buf) { __ASSERT_NO_MSG(buf); NET_BUF_DBG("buf %p (old) ref %u pool_id %u", buf, buf->ref, buf->pool_id); buf->ref++; return buf; } struct net_buf *net_buf_clone(struct net_buf *buf, k_timeout_t timeout) { k_timepoint_t end = sys_timepoint_calc(timeout); struct net_buf_pool *pool; struct net_buf *clone; __ASSERT_NO_MSG(buf); pool = net_buf_pool_get(buf->pool_id); clone = net_buf_alloc_len(pool, 0, timeout); if (!clone) { return NULL; } /* If the pool supports data referencing use that. Otherwise * we need to allocate new data and make a copy. */ if (pool->alloc->cb->ref && !(buf->flags & NET_BUF_EXTERNAL_DATA)) { clone->__buf = buf->__buf ? data_ref(buf, buf->__buf) : NULL; clone->data = buf->data; clone->len = buf->len; clone->size = buf->size; } else { size_t size = buf->size; timeout = sys_timepoint_timeout(end); clone->__buf = data_alloc(clone, &size, timeout); if (!clone->__buf || size < buf->size) { net_buf_destroy(clone); return NULL; } clone->size = size; clone->data = clone->__buf + net_buf_headroom(buf); net_buf_add_mem(clone, buf->data, buf->len); } /* user_data_size should be the same for buffers from the same pool */ __ASSERT(buf->user_data_size == clone->user_data_size, "Unexpected user data size"); memcpy(clone->user_data, buf->user_data, clone->user_data_size); return clone; } int net_buf_user_data_copy(struct net_buf *dst, const struct net_buf *src) { __ASSERT_NO_MSG(dst); __ASSERT_NO_MSG(src); if (dst == src) { return 0; } if (dst->user_data_size < src->user_data_size) { return -EINVAL; } memcpy(dst->user_data, src->user_data, src->user_data_size); return 0; } struct net_buf *net_buf_frag_last(struct net_buf *buf) { __ASSERT_NO_MSG(buf); while (buf->frags) { buf = buf->frags; } return buf; } void net_buf_frag_insert(struct net_buf *parent, struct net_buf *frag) { __ASSERT_NO_MSG(parent); __ASSERT_NO_MSG(frag); if (parent->frags) { net_buf_frag_last(frag)->frags = parent->frags; } /* Take ownership of the fragment reference */ parent->frags = frag; } struct net_buf *net_buf_frag_add(struct net_buf *head, struct net_buf *frag) { __ASSERT_NO_MSG(frag); if (!head) { return net_buf_ref(frag); } net_buf_frag_insert(net_buf_frag_last(head), frag); return head; } #if defined(CONFIG_NET_BUF_LOG) struct net_buf *net_buf_frag_del_debug(struct net_buf *parent, struct net_buf *frag, const char *func, int line) #else struct net_buf *net_buf_frag_del(struct net_buf *parent, struct net_buf *frag) #endif { struct net_buf *next_frag; __ASSERT_NO_MSG(frag); if (parent) { __ASSERT_NO_MSG(parent->frags); __ASSERT_NO_MSG(parent->frags == frag); parent->frags = frag->frags; } next_frag = frag->frags; frag->frags = NULL; #if defined(CONFIG_NET_BUF_LOG) net_buf_unref_debug(frag, func, line); #else net_buf_unref(frag); #endif return next_frag; } size_t net_buf_linearize(void *dst, size_t dst_len, const struct net_buf *src, size_t offset, size_t len) { const struct net_buf *frag; size_t to_copy; size_t copied; len = MIN(len, dst_len); frag = src; /* find the right fragment to start copying from */ while (frag && offset >= frag->len) { offset -= frag->len; frag = frag->frags; } /* traverse the fragment chain until len bytes are copied */ copied = 0; while (frag && len > 0) { to_copy = MIN(len, frag->len - offset); memcpy((uint8_t *)dst + copied, frag->data + offset, to_copy); copied += to_copy; /* to_copy is always <= len */ len -= to_copy; frag = frag->frags; /* after the first iteration, this value will be 0 */ offset = 0; } return copied; } /* This helper routine will append multiple bytes, if there is no place for * the data in current fragment then create new fragment and add it to * the buffer. It assumes that the buffer has at least one fragment. */ size_t net_buf_append_bytes(struct net_buf *buf, size_t len, const void *value, k_timeout_t timeout, net_buf_allocator_cb allocate_cb, void *user_data) { struct net_buf *frag = net_buf_frag_last(buf); size_t added_len = 0; const uint8_t *value8 = value; size_t max_size; do { uint16_t count = MIN(len, net_buf_tailroom(frag)); net_buf_add_mem(frag, value8, count); len -= count; added_len += count; value8 += count; if (len == 0) { return added_len; } if (allocate_cb) { frag = allocate_cb(timeout, user_data); } else { struct net_buf_pool *pool; /* Allocate from the original pool if no callback has * been provided. */ pool = net_buf_pool_get(buf->pool_id); max_size = pool->alloc->max_alloc_size; frag = net_buf_alloc_len(pool, max_size ? MIN(len, max_size) : len, timeout); } if (!frag) { return added_len; } net_buf_frag_add(buf, frag); } while (1); /* Unreachable */ return 0; } size_t net_buf_data_match(const struct net_buf *buf, size_t offset, const void *data, size_t len) { const uint8_t *dptr = data; const uint8_t *bptr; size_t compared = 0; size_t to_compare; if (!buf || !data) { return compared; } /* find the right fragment to start comparison */ while (buf && offset >= buf->len) { offset -= buf->len; buf = buf->frags; } while (buf && len > 0) { bptr = buf->data + offset; to_compare = MIN(len, buf->len - offset); for (size_t i = 0; i < to_compare; ++i) { if (dptr[compared] != bptr[i]) { return compared; } compared++; } len -= to_compare; buf = buf->frags; offset = 0; } return compared; }