/* * Copyright 2019 Intel Corporation * Copyright 2022 Nuvoton Technology Corporation. * Copyright 2023 Google LLC * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include LOG_MODULE_REGISTER(input_kbd_matrix, CONFIG_INPUT_LOG_LEVEL); void input_kbd_matrix_poll_start(const struct device *dev) { struct input_kbd_matrix_common_data *data = dev->data; k_sem_give(&data->poll_lock); } static bool input_kbd_matrix_ghosting(const struct device *dev) { const struct input_kbd_matrix_common_config *cfg = dev->config; const kbd_row_t *state = cfg->matrix_new_state; /* * Matrix keyboard designs are suceptible to ghosting. * An extra key appears to be pressed when 3 keys belonging to the same * block are pressed. For example, in the following block: * * . . w . q . * . . . . . . * . . . . . . * . . m . a . * * the key m would look as pressed if the user pressed keys w, q and a * simultaneously. A block can also be formed, with not adjacent * columns. */ for (int c = 0; c < cfg->col_size; c++) { if (!state[c]) { continue; } for (int c_next = c + 1; c_next < cfg->col_size; c_next++) { /* * We AND the columns to detect a "block". This is an * indication of ghosting, due to current flowing from * a key which was never pressed. In our case, current * flowing is a bit set to 1 as we flipped the bits * when the matrix was scanned. Now we OR the colums * using z&(z-1) which is non-zero only if z has more * than one bit set. */ kbd_row_t common_row_bits = state[c] & state[c_next]; if (common_row_bits & (common_row_bits - 1)) { return true; } } } return false; } static void input_kbd_matrix_drive_column(const struct device *dev, int col) { const struct input_kbd_matrix_common_config *cfg = dev->config; const struct input_kbd_matrix_api *api = cfg->api; api->drive_column(dev, col); #ifdef CONFIG_INPUT_KBD_DRIVE_COLUMN_HOOK input_kbd_matrix_drive_column_hook(dev, col); #endif } static bool input_kbd_matrix_is_suspended(const struct device *dev) { #ifdef CONFIG_PM_DEVICE struct input_kbd_matrix_common_data *data = dev->data; return atomic_get(&data->suspended) == 1; #else return false; #endif } static bool input_kbd_matrix_scan(const struct device *dev) { const struct input_kbd_matrix_common_config *cfg = dev->config; const struct input_kbd_matrix_api *api = cfg->api; kbd_row_t row; kbd_row_t key_event = 0U; for (int col = 0; col < cfg->col_size; col++) { if (cfg->actual_key_mask != NULL && cfg->actual_key_mask[col] == 0) { continue; } if (input_kbd_matrix_is_suspended(dev)) { cfg->matrix_new_state[col] = 0; continue; }; input_kbd_matrix_drive_column(dev, col); /* Allow the matrix to stabilize before reading it */ k_busy_wait(cfg->settle_time_us); row = api->read_row(dev); if (cfg->actual_key_mask != NULL) { row &= cfg->actual_key_mask[col]; } cfg->matrix_new_state[col] = row; key_event |= row; } input_kbd_matrix_drive_column(dev, INPUT_KBD_MATRIX_COLUMN_DRIVE_NONE); return key_event != 0U; } static void input_kbd_matrix_update_state(const struct device *dev) { const struct input_kbd_matrix_common_config *cfg = dev->config; struct input_kbd_matrix_common_data *data = dev->data; kbd_row_t *matrix_new_state = cfg->matrix_new_state; uint32_t cycles_now; kbd_row_t row_changed; kbd_row_t deb_col; cycles_now = k_cycle_get_32(); data->scan_clk_cycle[data->scan_cycles_idx] = cycles_now; /* * The intent of this loop is to gather information related to key * changes. */ for (int c = 0; c < cfg->col_size; c++) { /* Check if there was an update from the previous scan */ row_changed = matrix_new_state[c] ^ cfg->matrix_previous_state[c]; if (!row_changed) { continue; } for (int r = 0; r < cfg->row_size; r++) { uint8_t cyc_idx = c * cfg->row_size + r; /* * Index all they keys that changed for each row in * order to debounce each key in terms of it */ if (row_changed & BIT(r)) { cfg->scan_cycle_idx[cyc_idx] = data->scan_cycles_idx; } } cfg->matrix_unstable_state[c] |= row_changed; cfg->matrix_previous_state[c] = matrix_new_state[c]; } for (int c = 0; c < cfg->col_size; c++) { deb_col = cfg->matrix_unstable_state[c]; if (!deb_col) { continue; } /* Debouncing for each row key occurs here */ for (int r = 0; r < cfg->row_size; r++) { kbd_row_t mask = BIT(r); kbd_row_t row_bit = matrix_new_state[c] & mask; /* Continue if we already debounce a key */ if (!(deb_col & mask)) { continue; } uint8_t cyc_idx = c * cfg->row_size + r; uint8_t scan_cyc_idx = cfg->scan_cycle_idx[cyc_idx]; uint32_t scan_clk_cycle = data->scan_clk_cycle[scan_cyc_idx]; /* Convert the clock cycle differences to usec */ uint32_t deb_t_us = k_cyc_to_us_floor32(cycles_now - scan_clk_cycle); /* Does the key requires more time to be debounced? */ if (deb_t_us < (row_bit ? cfg->debounce_down_us : cfg->debounce_up_us)) { /* Need more time to debounce */ continue; } cfg->matrix_unstable_state[c] &= ~mask; /* Check if there was a change in the stable state */ if ((cfg->matrix_stable_state[c] & mask) == row_bit) { /* Key state did not change */ continue; } /* * The current row has been debounced, therefore update * the stable state. Then, proceed to notify the * application about the keys pressed. */ cfg->matrix_stable_state[c] ^= mask; input_report_abs(dev, INPUT_ABS_X, c, false, K_FOREVER); input_report_abs(dev, INPUT_ABS_Y, r, false, K_FOREVER); input_report_key(dev, INPUT_BTN_TOUCH, row_bit, true, K_FOREVER); } } data->scan_cycles_idx = (data->scan_cycles_idx + 1) % INPUT_KBD_MATRIX_SCAN_OCURRENCES; } static bool input_kbd_matrix_check_key_events(const struct device *dev) { const struct input_kbd_matrix_common_config *cfg = dev->config; bool key_pressed; /* Scan the matrix */ key_pressed = input_kbd_matrix_scan(dev); for (int c = 0; c < cfg->col_size; c++) { LOG_DBG("c=%2d u=%" PRIkbdrow " p=%" PRIkbdrow " n=%" PRIkbdrow, c, cfg->matrix_unstable_state[c], cfg->matrix_previous_state[c], cfg->matrix_new_state[c]); } /* Abort if ghosting is detected */ if (cfg->ghostkey_check && input_kbd_matrix_ghosting(dev)) { return key_pressed; } input_kbd_matrix_update_state(dev); return key_pressed; } static k_timepoint_t input_kbd_matrix_poll_timeout(const struct device *dev) { const struct input_kbd_matrix_common_config *cfg = dev->config; if (cfg->poll_timeout_ms == 0) { return sys_timepoint_calc(K_FOREVER); } return sys_timepoint_calc(K_MSEC(cfg->poll_timeout_ms)); } static void input_kbd_matrix_poll(const struct device *dev) { const struct input_kbd_matrix_common_config *cfg = dev->config; k_timepoint_t poll_time_end; uint32_t current_cycles; uint32_t cycles_diff; uint32_t wait_period_us; poll_time_end = input_kbd_matrix_poll_timeout(dev); while (true) { uint32_t start_period_cycles = k_cycle_get_32(); if (input_kbd_matrix_check_key_events(dev)) { poll_time_end = input_kbd_matrix_poll_timeout(dev); } else if (sys_timepoint_expired(poll_time_end)) { break; } /* * Subtract the time invested from the sleep period in order to * compensate for the time invested in debouncing a key */ current_cycles = k_cycle_get_32(); cycles_diff = current_cycles - start_period_cycles; wait_period_us = cfg->poll_period_us - k_cyc_to_us_floor32(cycles_diff); wait_period_us = CLAMP(wait_period_us, USEC_PER_MSEC, cfg->poll_period_us); LOG_DBG("wait_period_us: %d", wait_period_us); /* Allow other threads to run while we sleep */ k_usleep(wait_period_us); } } static void input_kbd_matrix_polling_thread(void *arg1, void *unused2, void *unused3) { const struct device *dev = arg1; const struct input_kbd_matrix_common_config *cfg = dev->config; const struct input_kbd_matrix_api *api = cfg->api; struct input_kbd_matrix_common_data *data = dev->data; ARG_UNUSED(unused2); ARG_UNUSED(unused3); while (true) { if (!input_kbd_matrix_is_suspended(dev)) { input_kbd_matrix_drive_column(dev, INPUT_KBD_MATRIX_COLUMN_DRIVE_ALL); api->set_detect_mode(dev, true); /* Check the rows again after enabling the interrupt to catch * any potential press since the last read. */ if (api->read_row(dev) != 0) { input_kbd_matrix_poll_start(dev); } } k_sem_take(&data->poll_lock, K_FOREVER); LOG_DBG("scan start"); /* Disable interrupt of KSI pins and start polling */ api->set_detect_mode(dev, false); input_kbd_matrix_poll(dev); } } #ifdef CONFIG_PM_DEVICE int input_kbd_matrix_pm_action(const struct device *dev, enum pm_device_action action) { struct input_kbd_matrix_common_data *data = dev->data; switch (action) { case PM_DEVICE_ACTION_SUSPEND: atomic_set(&data->suspended, 1); break; case PM_DEVICE_ACTION_RESUME: atomic_set(&data->suspended, 0); break; default: return -ENOTSUP; } input_kbd_matrix_poll_start(dev); return 0; } #endif int input_kbd_matrix_common_init(const struct device *dev) { struct input_kbd_matrix_common_data *data = dev->data; int ret; k_sem_init(&data->poll_lock, 0, 1); k_thread_create(&data->thread, data->thread_stack, K_KERNEL_STACK_SIZEOF(data->thread_stack), input_kbd_matrix_polling_thread, (void *)dev, NULL, NULL, CONFIG_INPUT_KBD_MATRIX_THREAD_PRIORITY, 0, K_NO_WAIT); k_thread_name_set(&data->thread, dev->name); ret = pm_device_runtime_enable(dev); if (ret < 0) { LOG_ERR("Failed to enable runtime power management"); return ret; } return 0; } #if CONFIG_INPUT_KBD_ACTUAL_KEY_MASK_DYNAMIC int input_kbd_matrix_actual_key_mask_set(const struct device *dev, uint8_t row, uint8_t col, bool enabled) { const struct input_kbd_matrix_common_config *cfg = dev->config; if (row >= cfg->row_size || col >= cfg->col_size) { return -EINVAL; } if (cfg->actual_key_mask == NULL) { LOG_WRN("actual-key-mask not defined for %s", dev->name); return -EINVAL; } WRITE_BIT(cfg->actual_key_mask[col], row, enabled); return 0; } #endif