/* * Copyright (c) 2021 STMicroelectronics * * SPDX-License-Identifier: Apache-2.0 */ #define LOG_DOMAIN flash_stm32l5 #define LOG_LEVEL CONFIG_FLASH_LOG_LEVEL #include LOG_MODULE_REGISTER(LOG_DOMAIN); #include #include #include #include #include #include #include #include #include "flash_stm32.h" #if defined(CONFIG_SOC_SERIES_STM32H5X) /* at this time stm32h5 mcus have 128KB (stm32h50x) or 2MB (stm32h56x/57x) */ #define STM32_SERIES_MAX_FLASH 2048 #elif defined(CONFIG_SOC_SERIES_STM32L5X) #define STM32_SERIES_MAX_FLASH 512 #elif defined(CONFIG_SOC_SERIES_STM32U5X) /* It is used to handle the 2 banks discontinuity case, the discontinuity is not happen on STM32U5, * so define it to flash size to avoid the unexptected check. */ #define STM32_SERIES_MAX_FLASH (CONFIG_FLASH_SIZE) #endif #define PAGES_PER_BANK ((FLASH_SIZE / FLASH_PAGE_SIZE) / 2) #define BANK2_OFFSET (KB(STM32_SERIES_MAX_FLASH) / 2) #define ICACHE_DISABLE_TIMEOUT_VALUE 1U /* 1ms */ #define ICACHE_INVALIDATE_TIMEOUT_VALUE 1U /* 1ms */ static int stm32_icache_disable(void) { int status = 0; uint32_t tickstart; LOG_DBG("I-cache Disable"); /* Clear BSYENDF flag first and then disable the instruction cache * that starts a cache invalidation procedure */ CLEAR_BIT(ICACHE->FCR, ICACHE_FCR_CBSYENDF); LL_ICACHE_Disable(); /* Get tick */ tickstart = k_uptime_get_32(); /* Wait for instruction cache to get disabled */ while (LL_ICACHE_IsEnabled()) { if ((k_uptime_get_32() - tickstart) > ICACHE_DISABLE_TIMEOUT_VALUE) { /* New check to avoid false timeout detection in case * of preemption. */ if (LL_ICACHE_IsEnabled()) { status = -ETIMEDOUT; break; } } } return status; } static void stm32_icache_enable(void) { LOG_DBG("I-cache Enable"); LL_ICACHE_Enable(); } static int icache_wait_for_invalidate_complete(void) { int status = -EIO; uint32_t tickstart; /* Check if ongoing invalidation operation */ if (LL_ICACHE_IsActiveFlag_BUSY()) { /* Get tick */ tickstart = k_uptime_get_32(); /* Wait for end of cache invalidation */ while (!LL_ICACHE_IsActiveFlag_BSYEND()) { if ((k_uptime_get_32() - tickstart) > ICACHE_INVALIDATE_TIMEOUT_VALUE) { break; } } } /* Clear any pending flags */ if (LL_ICACHE_IsActiveFlag_BSYEND()) { LOG_DBG("I-cache Invalidation complete"); LL_ICACHE_ClearFlag_BSYEND(); status = 0; } else { LOG_ERR("I-cache Invalidation timeout"); status = -ETIMEDOUT; } if (LL_ICACHE_IsActiveFlag_ERR()) { LOG_ERR("I-cache error"); LL_ICACHE_ClearFlag_ERR(); status = -EIO; } return status; } /* Macro to check if the flash is Dual bank or not */ #if defined(CONFIG_SOC_SERIES_STM32H5X) #define stm32_flash_has_2_banks(flash_device) true #else #define stm32_flash_has_2_banks(flash_device) \ (((FLASH_STM32_REGS(flash_device)->OPTR & FLASH_STM32_DBANK) \ == FLASH_STM32_DBANK) \ ? (true) : (false)) #endif /* CONFIG_SOC_SERIES_STM32H5X */ /* * offset and len must be aligned on write-block-size for write, * positive and not beyond end of flash */ bool flash_stm32_valid_range(const struct device *dev, off_t offset, uint32_t len, bool write) { if (stm32_flash_has_2_banks(dev) && (CONFIG_FLASH_SIZE < STM32_SERIES_MAX_FLASH)) { /* * In case of bank1/2 discontinuity, the range should not * start before bank2 and end beyond bank1 at the same time. * Locations beyond bank2 are caught by * flash_stm32_range_exists. */ if ((offset < BANK2_OFFSET) && (offset + len > FLASH_SIZE / 2)) { return 0; } } if (write && !flash_stm32_valid_write(offset, len)) { return false; } return flash_stm32_range_exists(dev, offset, len); } static int write_nwords(const struct device *dev, off_t offset, const uint32_t *buff, size_t n) { FLASH_TypeDef *regs = FLASH_STM32_REGS(dev); volatile uint32_t *flash = (uint32_t *)(offset + FLASH_STM32_BASE_ADDRESS); bool full_zero = true; uint32_t tmp; int rc; int i; /* if the non-secure control register is locked,do not fail silently */ if (regs->NSCR & FLASH_STM32_NSLOCK) { LOG_ERR("NSCR locked\n"); return -EIO; } /* Check that no Flash main memory operation is ongoing */ rc = flash_stm32_wait_flash_idle(dev); if (rc < 0) { return rc; } /* Check if this double/quad word is erased and value isn't 0. * * It is allowed to write only zeros over an already written dword / qword * See 6.3.7 in STM32L5 reference manual. * See 7.3.7 in STM32U5 reference manual. * See 7.3.5 in STM32H5 reference manual. */ for (i = 0; i < n; i++) { if (buff[i] != 0) { full_zero = false; break; } } if (!full_zero) { for (i = 0; i < n; i++) { if (flash[i] != 0xFFFFFFFFUL) { LOG_ERR("Word at offs %ld not erased", (long)(offset + i)); return -EIO; } } } /* Set the NSPG bit */ regs->NSCR |= FLASH_STM32_NSPG; /* Flush the register write */ tmp = regs->NSCR; /* Perform the data write operation at the desired memory address */ for (i = 0; i < n; i++) { flash[i] = buff[i]; } /* Wait until the NSBSY bit is cleared */ rc = flash_stm32_wait_flash_idle(dev); /* Clear the NSPG bit */ regs->NSCR &= (~FLASH_STM32_NSPG); return rc; } static int erase_page(const struct device *dev, unsigned int offset) { FLASH_TypeDef *regs = FLASH_STM32_REGS(dev); uint32_t tmp; int rc; int page; /* if the non-secure control register is locked,do not fail silently */ if (regs->NSCR & FLASH_STM32_NSLOCK) { LOG_ERR("NSCR locked\n"); return -EIO; } /* Check that no Flash memory operation is ongoing */ rc = flash_stm32_wait_flash_idle(dev); if (rc < 0) { return rc; } if (stm32_flash_has_2_banks(dev)) { bool bank_swap; /* Check whether bank1/2 are swapped */ bank_swap = ((regs->OPTR & FLASH_OPTR_SWAP_BANK) == FLASH_OPTR_SWAP_BANK); if ((offset < (FLASH_SIZE / 2)) && !bank_swap) { /* The pages to be erased is in bank 1 */ regs->NSCR &= ~FLASH_STM32_NSBKER_MSK; page = offset / FLASH_PAGE_SIZE; LOG_DBG("Erase page %d on bank 1", page); } else if ((offset >= BANK2_OFFSET) && bank_swap) { /* The pages to be erased is in bank 1 */ regs->NSCR &= ~FLASH_STM32_NSBKER_MSK; page = (offset - BANK2_OFFSET) / FLASH_PAGE_SIZE; LOG_DBG("Erase page %d on bank 1", page); } else if ((offset < (FLASH_SIZE / 2)) && bank_swap) { /* The pages to be erased is in bank 2 */ regs->NSCR |= FLASH_STM32_NSBKER; page = offset / FLASH_PAGE_SIZE; LOG_DBG("Erase page %d on bank 2", page); } else if ((offset >= BANK2_OFFSET) && !bank_swap) { /* The pages to be erased is in bank 2 */ regs->NSCR |= FLASH_STM32_NSBKER; page = (offset - BANK2_OFFSET) / FLASH_PAGE_SIZE; LOG_DBG("Erase page %d on bank 2", page); } else { LOG_ERR("Offset %d does not exist", offset); return -EINVAL; } } else { page = offset / FLASH_PAGE_SIZE_128_BITS; LOG_DBG("Erase page %d\n", page); } /* Set the NSPER bit and select the page you wish to erase */ regs->NSCR |= FLASH_STM32_NSPER; regs->NSCR &= ~FLASH_STM32_NSPNB_MSK; regs->NSCR |= (page << FLASH_STM32_NSPNB_POS); /* Set the NSSTRT bit */ regs->NSCR |= FLASH_STM32_NSSTRT; /* flush the register write */ tmp = regs->NSCR; /* Wait for the NSBSY bit */ rc = flash_stm32_wait_flash_idle(dev); if (stm32_flash_has_2_banks(dev)) { regs->NSCR &= ~(FLASH_STM32_NSPER | FLASH_STM32_NSBKER); } else { regs->NSCR &= ~(FLASH_STM32_NSPER); } return rc; } int flash_stm32_block_erase_loop(const struct device *dev, unsigned int offset, unsigned int len) { unsigned int address = offset; int rc = 0; bool icache_enabled = LL_ICACHE_IsEnabled(); if (icache_enabled) { /* Disable icache, this will start the invalidation procedure. * All changes(erase/write) to flash memory should happen when * i-cache is disabled. A write to flash performed without * disabling i-cache will set ERRF error flag in SR register. */ rc = stm32_icache_disable(); if (rc != 0) { return rc; } } for (; address <= offset + len - 1 ; address += FLASH_PAGE_SIZE) { rc = erase_page(dev, address); if (rc < 0) { break; } } if (icache_enabled) { /* Since i-cache was disabled, this would start the * invalidation procedure, so wait for completion. */ rc = icache_wait_for_invalidate_complete(); /* I-cache should be enabled only after the * invalidation is complete. */ stm32_icache_enable(); } return rc; } int flash_stm32_write_range(const struct device *dev, unsigned int offset, const void *data, unsigned int len) { int i, rc = 0; bool icache_enabled = LL_ICACHE_IsEnabled(); if (icache_enabled) { /* Disable icache, this will start the invalidation procedure. * All changes(erase/write) to flash memory should happen when * i-cache is disabled. A write to flash performed without * disabling i-cache will set ERRF error flag in SR register. */ rc = stm32_icache_disable(); if (rc != 0) { return rc; } } for (i = 0; i < len; i += FLASH_STM32_WRITE_BLOCK_SIZE) { rc = write_nwords(dev, offset + i, ((const uint32_t *) data + (i>>2)), FLASH_STM32_WRITE_BLOCK_SIZE / 4); if (rc < 0) { break; } } if (icache_enabled) { int rc2; /* Since i-cache was disabled, this would start the * invalidation procedure, so wait for completion. */ rc2 = icache_wait_for_invalidate_complete(); if (!rc) { rc = rc2; } /* I-cache should be enabled only after the * invalidation is complete. */ stm32_icache_enable(); } return rc; } void flash_stm32_page_layout(const struct device *dev, const struct flash_pages_layout **layout, size_t *layout_size) { static struct flash_pages_layout stm32_flash_layout[3]; static size_t stm32_flash_layout_size; *layout = stm32_flash_layout; if (stm32_flash_layout[0].pages_count != 0) { /* Short circuit calculation logic if already performed (size is known) */ *layout_size = stm32_flash_layout_size; return; } if (stm32_flash_has_2_banks(dev) && (CONFIG_FLASH_SIZE < STM32_SERIES_MAX_FLASH)) { /* * For stm32l552xx with 256 kB flash * which have space between banks 1 and 2. */ /* Bank1 */ stm32_flash_layout[0].pages_count = PAGES_PER_BANK; stm32_flash_layout[0].pages_size = FLASH_PAGE_SIZE; /* Dummy page corresponding to space between banks 1 and 2 */ stm32_flash_layout[1].pages_count = 1; stm32_flash_layout[1].pages_size = BANK2_OFFSET - (PAGES_PER_BANK * FLASH_PAGE_SIZE); /* Bank2 */ stm32_flash_layout[2].pages_count = PAGES_PER_BANK; stm32_flash_layout[2].pages_size = FLASH_PAGE_SIZE; stm32_flash_layout_size = ARRAY_SIZE(stm32_flash_layout); } else { /* * For stm32l562xx & stm32l552xx with 512 flash or stm32u5x, * which has no space between banks 1 and 2. */ if (stm32_flash_has_2_banks(dev)) { /* L5 flash with dualbank has 2k pages */ /* U5 flash pages are always 8 kB in size */ /* H5 flash pages are always 8 kB in size */ /* Considering one layout of full flash size, even with 2 banks */ stm32_flash_layout[0].pages_count = FLASH_SIZE / FLASH_PAGE_SIZE; stm32_flash_layout[0].pages_size = FLASH_PAGE_SIZE; #if defined(CONFIG_SOC_SERIES_STM32L5X) } else { /* L5 flash without dualbank has 4k pages */ stm32_flash_layout[0].pages_count = FLASH_PAGE_NB_128_BITS; stm32_flash_layout[0].pages_size = FLASH_PAGE_SIZE_128_BITS; #endif /* CONFIG_SOC_SERIES_STM32L5X */ } /* * In this case the stm32_flash_layout table has one single element * when read by the flash_get_page_info() */ stm32_flash_layout_size = 1; } *layout_size = stm32_flash_layout_size; }