/* * Copyright (c) 2023, Intel Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #include "flash_cadence_nand_ll.h" LOG_MODULE_REGISTER(flash_cdns_nand_ll, CONFIG_FLASH_LOG_LEVEL); /** * Wait for the Cadence NAND controller to become idle. * * @param base_address The base address of the Cadence NAND controller. * @retval 0 on success or -ETIMEDOUT error value on failure. */ static inline int32_t cdns_nand_wait_idle(uintptr_t base_address) { /* Wait status command response ready */ if (!WAIT_FOR(CNF_GET_CTRL_BUSY(sys_read32(CNF_CMDREG(base_address, CTRL_STATUS))) == 0U, IDLE_TIME_OUT, k_msleep(1))) { LOG_ERR("Timed out waiting for wait idle response"); return -ETIMEDOUT; } return 0; } /** * Set the row address for a NAND flash memory device using the Cadence NAND controller. * * @param params The Cadence NAND parameters structure. * @param local_row_address The row address. * @param page_set The page set number. */ static void row_address_set(struct cadence_nand_params *params, uint32_t *local_row_address, uint32_t page_set) { uint32_t block_number = 0; block_number = ((page_set) / (params->npages_per_block)); *local_row_address = 0; *local_row_address |= ROW_VAL_SET((params->page_size_bit) - 1, 0, ((page_set) % (params->npages_per_block))); *local_row_address |= ROW_VAL_SET((params->block_size_bit) - 1, (params->page_size_bit), block_number); *local_row_address |= ROW_VAL_SET((params->lun_size_bit) - 1, (params->block_size_bit), (block_number / params->nblocks_per_lun)); } /** * Retrieve information about the NAND flash device using the Cadence NAND controller. * * @param params The Cadence NAND parameters structure. * @retval 0 on success or -ENXIO error value on failure. */ static int cdns_nand_device_info(struct cadence_nand_params *params) { struct nf_ctrl_version *nf_ver; uintptr_t base_address; uint32_t reg_value = 0; uint8_t type; base_address = params->nand_base; /* Read flash device version information */ reg_value = sys_read32(CNF_CTRLPARAM(base_address, VERSION)); nf_ver = (struct nf_ctrl_version *)®_value; LOG_INF("NAND Flash Version Information"); LOG_INF("HPNFC Magic Number 0x%x", nf_ver->hpnfc_magic_number); LOG_INF("Fixed number 0x%x", nf_ver->ctrl_fix); LOG_INF("Controller Revision Number 0x%x", nf_ver->ctrl_rev); /* Interface Type */ reg_value = sys_read32(CNF_CTRLPARAM(base_address, DEV_PARAMS0)); type = CNF_GET_DEV_TYPE(reg_value); if (type == CNF_DT_UNKNOWN) { LOG_ERR("%s: device type unknown", __func__); return -ENXIO; } params->nluns = CNF_GET_NLUNS(reg_value); LOG_INF("Number of LUMs %hhx", params->nluns); /* Pages per block */ reg_value = sys_read32(CNF_CTRLCFG(base_address, DEV_LAYOUT)); params->npages_per_block = GET_PAGES_PER_BLOCK(reg_value); /* Page size and spare size */ reg_value = sys_read32(CNF_CTRLPARAM(base_address, DEV_AREA)); params->page_size = GET_PAGE_SIZE(reg_value); params->spare_size = GET_SPARE_SIZE(reg_value); /* Device blocks per LUN */ params->nblocks_per_lun = sys_read32(CNF_CTRLPARAM(base_address, DEV_BLOCKS_PLUN)); /* Calculate block size and total device size */ params->block_size = (params->npages_per_block * params->page_size); params->device_size = ((long long)params->block_size * (long long)(params->nblocks_per_lun * params->nluns)); LOG_INF("block size %x total device size %llx", params->block_size, params->device_size); /* Calculate bit size of page, block and lun*/ params->page_size_bit = find_msb_set((params->npages_per_block) - 1); params->block_size_bit = find_msb_set((params->nblocks_per_lun) - 1); params->lun_size_bit = find_msb_set((params->nluns) - 1); return 0; } /** * Retrieve the status of a specific thread in the Cadence NAND controller. * * @param base_address The base address of the Cadence NAND controller. * @param thread The thread identifier. * @retval The status of the thread. */ static uint32_t cdns_nand_get_thrd_status(uintptr_t base_address, uint8_t thread) { uint32_t status; sys_write32(THREAD_VAL(thread), (base_address + CMD_STATUS_PTR_ADDR)); status = sys_read32((base_address + CMD_STAT_CMD_STATUS)); return status; } /** * Wait for a specific thread in the Cadence controller to complete. * * @param base_address The base address of the Cadence controller. * @param thread The thread identifier to wait for. * @retval 0 on success or -ETIMEDOUT error value on failure. */ static int cdns_wait_for_thread(uintptr_t base_address, uint8_t thread) { if (!WAIT_FOR((sys_read32((base_address) + THR_STATUS) & BIT(thread)) == 0U, THREAD_IDLE_TIME_OUT, k_msleep(1))) { LOG_ERR("Timed out waiting for thread response"); return -ETIMEDOUT; } return 0; } /** * Set features in the Cadence NAND controller using PIO operations. * * @param base_address The base address of the Cadence NAND controller. * @param feat_addr The address of the feature to be set. * @param feat_val The value of the feature to be set. * @param thread The thread identifier for the PIO operation. * @param vol_id The volume identifier for the feature set operation. * @param use_intr Flag indicating whether to use interrupts during the operation. * @retval 0 on success or -ETIMEDOUT error value on failure. */ static int cdns_nand_pio_set_features(uintptr_t base_address, uint8_t feat_addr, uint8_t feat_val, uint8_t thread, uint8_t vol_id) { uint32_t status = 0; int ret = 0; ret = cdns_wait_for_thread(base_address, thread); if (ret != 0) { return ret; } sys_write32(SET_FEAT_ADDR(feat_addr), (base_address + CDNS_CMD_REG1)); sys_write32(feat_val, (base_address + CDNS_CMD_REG2)); status = CMD_0_THREAD_POS_SET(thread); status |= CMD_0_C_MODE_SET(CT_PIO_MODE); status |= PIO_CMD0_CT_SET(PIO_SET_FEA_MODE); status |= CMD_0_VOL_ID_SET(vol_id); sys_write32(status, (base_address + CDNS_CMD_REG0)); return 0; } /** * Check whether a transfer complete for PIO operation in the Cadence controller has finished. * * @param base_address The base address of the Cadence controller. * @param thread The thread identifier for the PIO operation. * @retval 0 on success or negative error value on failure. */ static int cdns_pio_transfer_complete(uintptr_t base_address, uint8_t thread) { uint32_t status; status = WAIT_FOR(((cdns_nand_get_thrd_status(base_address, thread)) != 0), IDLE_TIME_OUT, k_msleep(1)); if (status == 0) { LOG_ERR("Timed out waiting for thread status response"); return -ETIMEDOUT; } if ((status & (BIT(F_CSTAT_COMP)))) { if ((status & (BIT(F_CSTAT_FAIL)))) { LOG_ERR("Cadence status operation failed %s", __func__); return -EIO; } } else { LOG_ERR("Cadence status complete failed %s", __func__); return -EIO; } return 0; } /** * Set the operational mode for the Cadence NAND controller. * * @param base_address The base address of the Cadence NAND controller. * @param opr_mode The operational mode SDR / NVDDR to set. * @retval 0 on success or negative error value on failure. */ static int cdns_nand_set_opr_mode(uintptr_t base_address, uint8_t opr_mode) { uint8_t device_type; uint32_t timing_mode = 0; uint32_t status; int ret; if (opr_mode == CNF_OPR_WORK_MODE_SDR) { status = ONFI_TIMING_MODE_SDR( sys_read32(CNF_CTRLPARAM(base_address, ONFI_TIMING_0))); timing_mode = find_lsb_set(status) - 1; /* PHY Register Timing setting*/ sys_write32(PHY_CTRL_REG_SDR, (base_address + PHY_CTRL_REG_OFFSET)); sys_write32(PHY_TSEL_REG_SDR, (base_address + PHY_TSEL_REG_OFFSET)); sys_write32(PHY_DQ_TIMING_REG_SDR, (base_address + PHY_DQ_TIMING_REG_OFFSET)); sys_write32(PHY_DQS_TIMING_REG_SDR, (base_address + PHY_DQS_TIMING_REG_OFFSET)); sys_write32(PHY_GATE_LPBK_CTRL_REG_SDR, (base_address + PHY_GATE_LPBK_OFFSET)); sys_write32(PHY_DLL_MASTER_CTRL_REG_SDR, (base_address + PHY_DLL_MASTER_OFFSET)); /* Async mode timing settings */ sys_write32((CNF_ASYNC_TIMINGS_TRH) | (CNF_ASYNC_TIMINGS_TRP) | (CNF_ASYNC_TIMINGS_TWH) | (CNF_ASYNC_TIMINGS_TWP), CNF_MINICTRL(base_address, ASYNC_TOGGLE_TIMINGS)); /* Set operation work mode in common settings */ sys_clear_bits(CNF_MINICTRL(base_address, CMN_SETTINGS), CNF_OPR_WORK_MODE_SDR_MASK); } else { /* NVDDR MODE */ status = ONFI_TIMING_MODE_NVDDR( sys_read32(CNF_CTRLPARAM(base_address, ONFI_TIMING_0))); timing_mode = find_lsb_set(status) - 1; /* PHY Register Timing setting*/ sys_write32(PHY_CTRL_REG_DDR, (base_address + PHY_CTRL_REG_OFFSET)); sys_write32(PHY_TSEL_REG_DDR, (base_address + PHY_TSEL_REG_OFFSET)); sys_write32(PHY_DQ_TIMING_REG_DDR, (base_address + PHY_DQ_TIMING_REG_OFFSET)); sys_write32(PHY_DQS_TIMING_REG_DDR, (base_address + PHY_DQS_TIMING_REG_OFFSET)); sys_write32(PHY_GATE_LPBK_CTRL_REG_DDR, (base_address + PHY_GATE_LPBK_OFFSET)); sys_write32(PHY_DLL_MASTER_CTRL_REG_DDR, (base_address + PHY_DLL_MASTER_OFFSET)); /* Set operation work mode in common settings */ sys_set_bits(CNF_MINICTRL(base_address, CMN_SETTINGS), CNF_OPR_WORK_MODE_NVDDR_MASK); } /* Wait for controller to be in idle state */ ret = cdns_nand_wait_idle(base_address); if (ret != 0) { LOG_ERR("Wait for controller to be in idle state Failed"); return ret; } /* Check device type */ device_type = CNF_GET_DEV_TYPE(sys_read32(CNF_CTRLPARAM(base_address, DEV_PARAMS0))); if (device_type != ONFI_INTERFACE) { LOG_ERR("Driver does not support this interface"); return -ENOTSUP; } /* Reset DLL PHY */ sys_clear_bit(CNF_MINICTRL(base_address, DLL_PHY_CTRL), CNF_DLL_PHY_RST_N); /* Wait for controller to be in idle state */ ret = cdns_nand_wait_idle(base_address); if (ret != 0) { LOG_ERR("Wait for controller to be in idle state Failed"); return ret; } ret = cdns_nand_pio_set_features(base_address, SET_FEAT_TIMING_MODE_ADDRESS, timing_mode, NF_TDEF_TRD_NUM, VOL_ID); if (ret != 0) { return ret; } ret = cdns_pio_transfer_complete(base_address, NF_TDEF_TRD_NUM); if (ret != 0) { LOG_ERR("cdns pio check failed"); return ret; } ret = cdns_nand_wait_idle(base_address); if (ret != 0) { LOG_ERR("Wait for controller to be in idle state Failed"); return ret; } /* set dll_rst_n in dll_phy_ctrl to 1 */ sys_set_bit(CNF_MINICTRL(base_address, DLL_PHY_CTRL), CNF_DLL_PHY_RST_N); ret = cdns_nand_wait_idle(base_address); if (ret != 0) { LOG_ERR("Wait for controller to be in idle state Failed"); return ret; } return 0; } /** * Configure the transfer settings of the Cadence NAND controller. * * @param base_address The base address of the Cadence NAND controller. * @retval 0 on success or -ETIMEDOUT error value on failure. */ static int cdns_nand_transfer_config(uintptr_t base_address) { int ret = 0; /* Wait for controller to be in idle state */ ret = cdns_nand_wait_idle(base_address); if (ret != 0) { LOG_ERR("Wait for controller to be in idle state Failed"); return ret; } /* Configure data transfer parameters */ sys_write32(ENABLE, CNF_CTRLCFG(base_address, TRANS_CFG0)); /* Disable cache and multiplane. */ sys_write32(DISABLE, CNF_CTRLCFG(base_address, MULTIPLANE_CFG)); sys_write32(DISABLE, CNF_CTRLCFG(base_address, CACHE_CFG)); /* Clear all interrupts. */ sys_write32(CLEAR_ALL_INTERRUPT, (base_address + INTR_STATUS)); return 0; } /** * Initialize the Cadence NAND controller. * * @param params The Cadence NAND parameters structure. * @retval 0 on success or negative error value on failure. */ int cdns_nand_init(struct cadence_nand_params *params) { uint32_t reg_value_read = 0; uintptr_t base_address = params->nand_base; uint8_t datarate_mode = params->datarate_mode; int ret; if (!WAIT_FOR(CNF_GET_INIT_COMP(sys_read32(CNF_CMDREG(base_address, CTRL_STATUS))) != 0U, IDLE_TIME_OUT, k_msleep(1))) { LOG_ERR("Timed out waiting for NAND Controller Init complete status response"); return -ETIMEDOUT; } if (CNF_GET_INIT_FAIL(sys_read32(CNF_CMDREG(base_address, CTRL_STATUS))) != 0) { LOG_ERR("NAND Controller Init complete Failed!!!"); return -ENODEV; } ret = cdns_nand_device_info(params); if (ret != 0) { return ret; } /* Hardware Support Features */ reg_value_read = sys_read32(CNF_CTRLPARAM(base_address, FEATURE)); /* Enable data integrity parity check if the data integrity parity mechanism is */ /* supported by the device */ if (CNF_HW_DI_PR_SUPPORT(reg_value_read) != 0) { sys_set_bit(CNF_DI(base_address, CONTROL), CNF_DI_PAR_EN); } /* Enable data integrity CRC check if the data integrity CRC mechanism is */ /* supported by the device */ if (CNF_HW_DI_CRC_SUPPORT(reg_value_read) != 0) { sys_set_bit(CNF_DI(base_address, CONTROL), CNF_DI_CRC_EN); } /* Status polling mode, device control and status register */ ret = cdns_nand_wait_idle(base_address); if (ret != 0) { LOG_ERR("Wait for controller to be in idle state Failed"); return ret; } sys_write32(DEV_STAT_DEF_VALUE, CNF_CTRLCFG(base_address, DEV_STAT)); /* Set operation work mode */ ret = cdns_nand_set_opr_mode(base_address, datarate_mode); if (ret != 0) { return ret; } /* Set data transfer configuration parameters */ ret = cdns_nand_transfer_config(base_address); if (ret != 0) { return ret; } /* Wait for controller to be in idle state */ ret = cdns_nand_wait_idle(base_address); if (ret != 0) { LOG_ERR("Wait for controller to be in idle state Failed"); return ret; } /* DMA Setting */ sys_write32((F_BURST_SEL_SET(NF_TDEF_BURST_SEL)) | (BIT(F_OTE)), (base_address + NF_DMA_SETTING)); /* Pre fetch */ sys_write32(((NF_FIFO_TRIGG_LVL_SET(PRE_FETCH_VALUE)) | (NF_DMA_PACKAGE_SIZE_SET(PRE_FETCH_VALUE))), (base_address + NF_PRE_FETCH)); /* Total bits in row addressing*/ params->total_bit_row = find_msb_set(((params->npages_per_block) - 1)) + find_msb_set((params->nblocks_per_lun) - 1); if (ret != 0) { LOG_ERR("Failed to establish device access width!"); return -EINVAL; } /* Enable Global Interrupt for NAND*/ #ifdef CONFIG_CDNS_NAND_INTERRUPT_SUPPORT sys_set_bit((base_address + INTERRUPT_STATUS_REG), GINTR_ENABLE); #endif return 0; } #if CONFIG_CDNS_NAND_CDMA_MODE /** * * This function performs Command descriptor structure prepareation. * * @param nf_mem determine which NF memory bank will be selected * @param flash_ptr start ROW address in NF memory * @param mem_ptr system memory pointer * @param ctype Command type (read/write/erase) * @param cmd_cnt counter for commands * @param dma_sel select DMA engine (0 - slave DMA, 1 - master DMA) * @param vol_id specify target volume ID * */ void cdns_nand_cdma_prepare(char nf_mem, uint32_t flash_ptr, char *mem_ptr, uint16_t ctype, int32_t cmd_cnt, uint8_t dma_sel, uint8_t vol_id, struct cdns_cdma_command_descriptor *desc) { struct cdns_cdma_command_descriptor *cdma_desc; cdma_desc = desc; /* set fields for one descriptor */ cdma_desc->flash_pointer = flash_ptr; cdma_desc->bank_number = nf_mem; cdma_desc->command_flags |= CDMA_CF_DMA_MASTER_SET(dma_sel) | F_CFLAGS_VOL_ID_SET(vol_id); cdma_desc->memory_pointer = (uintptr_t)mem_ptr; cdma_desc->status = 0; cdma_desc->sync_flag_pointer = 0; cdma_desc->sync_arguments = 0; cdma_desc->ctrl_data_ptr = 0x40; cdma_desc->command_type = ctype; if (cmd_cnt > 1) { cdma_desc->next_pointer = (uintptr_t)(desc + 1); cdma_desc->command_flags |= CFLAGS_MPTRPC_SET | CFLAGS_MPTRPC_SET; cdma_desc->command_flags |= CFLAGS_CONT_SET; } else { cdma_desc->next_pointer = 0; #ifdef CONFIG_CDNS_NAND_INTERRUPT_SUPPORT cdma_desc->command_flags |= CDMA_CF_INT_SET; #endif } } /** * Check a command descriptor transfer complete status in the Cadence NAND controller. * * @param desc_ptr The pointer to the command descriptor structure. * @param params The Cadence NAND parameters structure. * @retval 0 on success or negative error value on failure. */ static int cdns_transfer_complete(struct cdns_cdma_command_descriptor *desc_ptr, struct cadence_nand_params *params) { #ifdef CONFIG_CDNS_NAND_INTERRUPT_SUPPORT uint32_t status = 0; NAND_INT_SEM_TAKE(params); sys_write32(NF_TDEF_TRD_NUM, (params->nand_base + CMD_STATUS_PTR_ADDR)); status = sys_read32((params->nand_base + CMD_STAT_CMD_STATUS)); if ((status & (BIT(F_CSTAT_COMP)))) { if ((status & (BIT(F_CSTAT_FAIL)))) { LOG_ERR("Cadence status operation failed %s", __func__); return -EIO; } } else { LOG_ERR("Cadence status complete failed %s", __func__); return -EIO; } #else ARG_UNUSED(params); if (!WAIT_FOR(((desc_ptr->status & (BIT(F_CSTAT_COMP))) != 0), IDLE_TIME_OUT, k_msleep(1))) { LOG_ERR("Timed out waiting for thread status response"); return -ETIMEDOUT; } if ((desc_ptr->status & (BIT(F_CSTAT_FAIL))) != 0) { LOG_ERR("Cadence status operation failed %s", __func__); return -EIO; } #endif return 0; } /** * Send a command descriptor to the Cadence NAND controller for execution. * * @param base_address The base address of the Cadence NAND controller. * @param desc_ptr The pointer to the command descriptor. * @param thread The thread number for the execution. * @retval 0 on success or -ETIMEDOUT error value on failure. */ static int cdns_nand_send(uintptr_t base_address, char *desc_ptr, uint8_t thread) { uint64_t desc_address; uint32_t status; int ret; desc_address = (uint64_t)desc_ptr; ret = cdns_wait_for_thread(base_address, thread); if (ret != 0) { return ret; } /* desc_ptr address passing */ sys_write32(desc_address & U32_MASK_VAL, (base_address + CDNS_CMD_REG2)); sys_write32((desc_address >> 32) & U32_MASK_VAL, (base_address + CDNS_CMD_REG3)); /* Thread selection */ status = CMD_0_THREAD_POS_SET(thread); /* CDMA Mode selection */ status |= CMD_0_C_MODE_SET(CT_CDMA_MODE); /* CMD 0 Reg write*/ sys_write32(status, (base_address + CDNS_CMD_REG0)); return 0; } static int cdns_cdma_desc_transfer_finish(struct cadence_nand_params *params, uint32_t page_count, uint32_t max_page_desc, uint32_t ctype, uint32_t cond_start, char *buffer) { uint32_t page_count_pass = 0; uint32_t row_address = 0; uint32_t base_address; uint32_t page_buffer_size; struct cdns_cdma_command_descriptor *cdma_desc; int ret; page_buffer_size = (page_count > max_page_desc) ? max_page_desc : page_count; cdma_desc = k_malloc(sizeof(struct cdns_cdma_command_descriptor) * page_buffer_size); if (cdma_desc == NULL) { LOG_ERR("Memory allocation error occurred %s", __func__); return -ENOSR; } base_address = params->nand_base; while (page_count > 0) { row_address_set(params, &row_address, cond_start); if (page_count > max_page_desc) { page_count_pass = max_page_desc; page_count = page_count - max_page_desc; cond_start = cond_start + page_count_pass; } else { page_count_pass = page_count; page_count = page_count - page_count_pass; } for (int index = 0; index < page_count_pass; index++) { cdns_nand_cdma_prepare(NF_TDEF_DEV_NUM, row_address, buffer, (ctype + index), (page_count_pass - index), DMA_MS_SEL, VOL_ID, (cdma_desc + index)); } ret = cdns_nand_send(base_address, (char *)cdma_desc, NF_TDEF_TRD_NUM); if (ret != 0) { k_free(cdma_desc); return ret; } if (ctype != CNF_CMD_ERASE) { buffer = buffer + (max_page_desc * params->page_size); } ret = cdns_transfer_complete(cdma_desc, params); if (ret != 0) { k_free(cdma_desc); return ret; } } k_free(cdma_desc); return 0; } /** * Perform a CDMA write operation for the Cadence NAND controller. * * @param params The Cadence NAND parameters structure. * @param start_page_number The starting page number for the write operation. * @param buffer The buffer containing the data to be written. * @param page_count The number of pages to be written. * @retval 0 on success or negative error value on failure. */ static int cdns_nand_cdma_write(struct cadence_nand_params *params, uint32_t start_page_number, char *buffer, uint32_t page_count) { int ret; ret = cdns_cdma_desc_transfer_finish(params, page_count, CONFIG_FLASH_CDNS_CDMA_PAGE_COUNT, CNF_CMD_WR, start_page_number, buffer); return ret; } /** * Perform a CDMA read operation for the Cadence NAND controller. * * @param params The Cadence NAND parameters structure. * @param start_page_number The starting page number for the read operation. * @param buffer The buffer to store the read data. * @param page_count The number of pages to be read. * @retval 0 on success or negative error value on failure. */ static int cdns_nand_cdma_read(struct cadence_nand_params *params, uint32_t start_page_number, char *buffer, uint32_t page_count) { int ret; ret = cdns_cdma_desc_transfer_finish(params, page_count, CONFIG_FLASH_CDNS_CDMA_PAGE_COUNT, CNF_CMD_RD, start_page_number, buffer); return ret; } /** * Perform a CDMA erase operation for the Cadence NAND controller. * * @param params The Cadence NAND parameters structure. * @param start_block_number The starting block number for the erase operation. * @param block_count The number of blocks to be erased. * @retval 0 on success or negative error value on failure. */ static int cdns_nand_cdma_erase(struct cadence_nand_params *params, uint32_t start_block_number, uint32_t block_count) { int ret; ret = cdns_cdma_desc_transfer_finish(params, block_count, CONFIG_FLASH_CDNS_CDMA_BLOCK_COUNT, CNF_CMD_ERASE, start_block_number, NULL); return ret; } #endif #if CONFIG_CDNS_NAND_PIO_MODE /** * Perform an erase operation on the Cadence NAND controller using PIO. * * @param params The Cadence NAND parameters structure. * @param thread The thread identifier for the PIO operation. * @param bank The bank identifier for the erase operation. * @param start_block The starting block number for the erase operation. * @param ctype The command type for the erase operation. * @param block_count The number of blocks to be erased. * @retval 0 on success or negative error value on failure. */ static int cdns_nand_pio_erase(struct cadence_nand_params *params, uint8_t thread, uint8_t bank, uint32_t start_block, uint16_t ctype, uint32_t block_count) { uint32_t status; uintptr_t base_address; uint32_t row_address = 0; uint32_t index = 0; int ret; base_address = params->nand_base; for (index = 0; index < block_count; index++) { ret = cdns_wait_for_thread(base_address, thread); if (ret != 0) { return ret; } row_address_set(params, &row_address, (start_block * params->npages_per_block)); sys_write32(row_address, (base_address + CDNS_CMD_REG1)); start_block++; sys_write32((NF_CMD4_BANK_SET(bank)), (base_address + CDNS_CMD_REG4)); status = CMD_0_THREAD_POS_SET(thread); #ifdef CONFIG_CDNS_NAND_INTERRUPT_SUPPORT status |= BIT(PIO_CF_INT); #endif status |= CMD_0_C_MODE_SET(CT_PIO_MODE); status |= PIO_CMD0_CT_SET(ctype); sys_write32(status, (base_address + CDNS_CMD_REG0)); NAND_INT_SEM_TAKE(params); ret = cdns_pio_transfer_complete(base_address, thread); if (ret != 0) { return ret; } } return 0; } /** * Prepare for a PIO operation in the Cadence NAND controller. * * @param base_address The base address of the Cadence NAND controller. * @param thread The thread ID associated with the operation. * @param bank The bank ID for the operation. * @param row_address The row address for the operation. * @param buf The buffer containing the data for the operation. * @param ctype The command type for the operation. * @param dma_sel The DMA selection flag for the operation. * @param vol_id The volume ID for the operation. * @retval 0 on success or -ETIMEDOUT error value on failure. */ static int cdns_nand_pio_prepare(uintptr_t base_address, uint8_t thread, uint8_t bank, uint32_t row_address, char *buf, uint16_t ctype, uint8_t dma_sel, uint8_t vol_id) { uint64_t buf_addr = (uintptr_t)buf; uint32_t status; int ret; ret = cdns_wait_for_thread(base_address, thread); if (ret != 0) { return ret; } sys_write32(row_address, (base_address + CDNS_CMD_REG1)); sys_write32(NF_CMD4_BANK_SET(bank), (base_address + CDNS_CMD_REG4)); sys_write32(buf_addr & U32_MASK_VAL, (base_address + CDNS_CMD_REG2)); sys_write32((buf_addr >> 32) & U32_MASK_VAL, (base_address + CDNS_CMD_REG3)); status = CMD_0_THREAD_POS_SET(thread); #ifdef CONFIG_CDNS_NAND_INTERRUPT_SUPPORT status |= PIO_CF_INT_SET; #endif status |= PIO_CF_DMA_MASTER_SET(dma_sel); status |= CMD_0_C_MODE_SET(CT_PIO_MODE); status |= PIO_CMD0_CT_SET(ctype); status |= CMD_0_VOL_ID_SET(vol_id); sys_write32(status, (base_address + CDNS_CMD_REG0)); return 0; } /** * Perform a PIO write operation for the Cadence NAND controller. * * @param params The Cadence NAND parameters structure. * @param row_address The row address for the write operation. * @param buffer The buffer containing the data to be written. * @retval 0 on success or negative error value on failure. */ static int cdns_nand_pio_write(struct cadence_nand_params *params, uint32_t row_address, char *buffer) { uintptr_t base_address; int ret; base_address = params->nand_base; ret = cdns_nand_pio_prepare(base_address, NF_TDEF_TRD_NUM, NF_TDEF_DEV_NUM, row_address, buffer, CNF_CMD_WR, DMA_MS_SEL, VOL_ID); if (ret != 0) { return ret; } NAND_INT_SEM_TAKE(params); ret = cdns_pio_transfer_complete(base_address, NF_TDEF_TRD_NUM); if (ret != 0) { return ret; } return 0; } /** * Perform a PIO read operation for the Cadence NAND controller. * * @param params The Cadence NAND parameters structure. * @param row_address The row address for the read operation. * @param buffer The buffer to store the read data. * @retval 0 on success or negative error value on failure. */ static int cdns_nand_pio_read(struct cadence_nand_params *params, uint32_t row_address, char *buffer) { uintptr_t base_address; int ret; base_address = params->nand_base; ret = cdns_nand_pio_prepare(base_address, NF_TDEF_TRD_NUM, NF_TDEF_DEV_NUM, row_address, buffer, CNF_CMD_RD, DMA_MS_SEL, VOL_ID); if (ret != 0) { return ret; } NAND_INT_SEM_TAKE(params); ret = cdns_pio_transfer_complete(base_address, NF_TDEF_TRD_NUM); if (ret != 0) { return ret; } return 0; } /** * Perform a combined PIO read and write operation for the Cadence NAND controller. * * @param params The Cadence NAND parameters structure. * @param start_page_number The starting page number for the read/write operation. * @param buffer The buffer containing the data to be written or to store the read data. * @param page_count The number of pages to be read or written. * @param mode The mode of operation (read, write). * @retval 0 on success or negative error value on failure. */ static int cdns_nand_pio_read_write(struct cadence_nand_params *params, uint32_t start_page_number, char *buffer, uint32_t page_count, uint8_t mode) { uint32_t index; uint32_t pio_row_address = 0; int ret = 0; for (index = 0; index < page_count; index++) { row_address_set(params, &pio_row_address, start_page_number++); if (mode == CDNS_READ) { ret = cdns_nand_pio_read(params, pio_row_address, buffer + (index * (params->page_size))); } else { ret = cdns_nand_pio_write(params, pio_row_address, buffer + (index * (params->page_size))); } } return ret; } #endif #if CONFIG_CDNS_NAND_GENERIC_MODE /** * Send a generic command to the Cadence NAND controller. * * @param params The Cadence NAND parameters structure. * @param mini_ctrl_cmd The command to be sent. * @retval 0 on success or -ETIMEDOUT error value on failure. */ static int cdns_generic_send_cmd(struct cadence_nand_params *params, uint64_t mini_ctrl_cmd) { uint32_t mini_ctrl_cmd_l, mini_ctrl_cmd_h, status; uintptr_t base_address; int ret = 0; base_address = params->nand_base; mini_ctrl_cmd_l = mini_ctrl_cmd & U32_MASK_VAL; mini_ctrl_cmd_h = mini_ctrl_cmd >> 32; ret = cdns_nand_wait_idle(base_address); if (ret != 0) { LOG_ERR("Wait for controller to be in idle state Failed"); return ret; } sys_write32(mini_ctrl_cmd_l, (base_address + CDNS_CMD_REG2)); sys_write32(mini_ctrl_cmd_h, (base_address + CDNS_CMD_REG3)); /* Select generic command. */ status = CMD_0_THREAD_POS_SET(NF_TDEF_TRD_NUM); #ifdef CONFIG_CDNS_NAND_INTERRUPT_SUPPORT status |= GEN_CF_INT_SET(GEN_CF_INT_ENABLE); #endif status |= CMD_0_C_MODE_SET(CT_GENERIC_MODE); sys_write32(status, (base_address + CDNS_CMD_REG0)); return 0; } /** * Send a generic command data to the Cadence NAND controller. * * @param params The Cadence NAND parameters structure. * @param mode The mode of operation (read, write). * @param data_length The length of the associated data. * @retval 0 on success or -ETIMEDOUT error value on failure. */ static int cdns_generic_cmd_data(struct cadence_nand_params *params, uint8_t mode, uint32_t data_length) { uint64_t mini_ctrl_cmd = 0; int ret = 0; mini_ctrl_cmd |= GCMD_TWB_VALUE; mini_ctrl_cmd |= GCMCD_DATA_SEQ; mini_ctrl_cmd |= GEN_SECTOR_COUNT_SET; mini_ctrl_cmd |= GEN_LAST_SECTOR_SIZE_SET((uint64_t)data_length); mini_ctrl_cmd |= GEN_DIR_SET((uint64_t)mode); mini_ctrl_cmd |= GEN_SECTOR_SET((uint64_t)data_length); ret = cdns_generic_send_cmd(params, mini_ctrl_cmd); return ret; } /** * Wait for the completion of an SDMA operation in the Cadence NAND controller. * * @param base_address The base address of the Cadence NAND controller. * @retval 0 on success or -ETIMEDOUT error value on failure. */ static int cdns_wait_sdma(uintptr_t base_address) { if (!WAIT_FOR(((sys_read32(base_address + INTR_STATUS) & BIT(SDMA_TRIGG)) != 0), IDLE_TIME_OUT, k_msleep(1))) { LOG_ERR("Timed out waiting for sdma response"); return -ETIMEDOUT; } sys_set_bit((base_address + INTR_STATUS), SDMA_TRIGG); return 0; } /** * Perform buffer copying to SDMA regs in the Cadence NAND controller. * * @param sdma_base_address The base address of the SDMA in the Cadence NAND controller. * @param buffer The source or destination buffer for the copy operation. * @param data_length The length of the data to be copied. */ static void sdma_buffer_copy_in(uint32_t sdma_base_address, uint8_t *buffer, uint32_t data_length) { uint32_t index; for (index = 0; index < data_length; index++) { sys_write8(*(buffer + index), sdma_base_address + index); } } /** * Perform buffer copying from SDMA regs in the Cadence NAND controller. * * @param sdma_base_address The base address of the SDMA in the Cadence NAND controller. * @param buffer The source or destination buffer for the copy operation. * @param data_length The length of the data to be copied. */ static void sdma_buffer_copy_out(uint32_t sdma_base_address, uint8_t *buffer, uint32_t data_length) { uint32_t index; for (index = 0; index < data_length; index++) { *(buffer + index) = sys_read8(sdma_base_address + index); } } /** * Perform a generic page read operation in the Cadence NAND controller. * * @param params The Cadence NAND parameters structure. * @param read_address The address from which to read the page. * @param data_buffer The buffer to store the read data. * @retval 0 on success or negative error value on failure. */ static int cdns_generic_page_read(struct cadence_nand_params *params, uint64_t read_address, void *data_buffer) { uint64_t mini_ctrl_cmd = 0; uintptr_t base_address = params->nand_base; int ret; mini_ctrl_cmd = PAGE_READ_CMD; mini_ctrl_cmd |= GCMD_TWB_VALUE; if ((params->nluns > 1) || (params->total_bit_row > 16)) { mini_ctrl_cmd |= PAGE_MAX_BYTES(PAGE_MAX_SIZE); } else { mini_ctrl_cmd |= PAGE_MAX_BYTES(PAGE_MAX_SIZE - 1); } mini_ctrl_cmd |= read_address << 32; ret = cdns_generic_send_cmd(params, mini_ctrl_cmd); if (ret != 0) { return ret; } NAND_INT_SEM_TAKE(params); ret = cdns_generic_cmd_data(params, CDNS_READ, params->page_size); if (ret != 0) { return ret; } NAND_INT_SEM_TAKE(params); ret = cdns_wait_sdma(base_address); if (ret != 0) { return ret; } sdma_buffer_copy_out(params->sdma_base, data_buffer, params->page_size); return 0; } /** * Perform a generic page write operation in the Cadence NAND controller. * * @param params The Cadence NAND parameters structure. * @param write_address The address to which the page will be written. * @param data_buffer The buffer containing the data to be written. * @retval 0 on success or negative error value on failure. */ static int cdns_generic_page_write(struct cadence_nand_params *params, uint64_t write_address, void *data_buffer) { uint64_t mini_ctrl_cmd = 0; int ret; uintptr_t base_address = params->nand_base; mini_ctrl_cmd |= GCMD_TWB_VALUE; mini_ctrl_cmd |= GEN_ADDR_WRITE_DATA((uint32_t)write_address); if ((params->nluns > 1) || (params->total_bit_row > BIT16_CHECK)) { mini_ctrl_cmd |= PAGE_MAX_BYTES(PAGE_MAX_SIZE); } else { mini_ctrl_cmd |= PAGE_MAX_BYTES(PAGE_MAX_SIZE - 1); } mini_ctrl_cmd |= PAGE_WRITE_CMD; ret = cdns_generic_send_cmd(params, mini_ctrl_cmd); if (ret != 0) { return ret; } NAND_INT_SEM_TAKE(params); ret = cdns_generic_cmd_data(params, CDNS_WRITE, params->page_size); if (ret != 0) { return ret; } sdma_buffer_copy_in(params->sdma_base, data_buffer, params->page_size); NAND_INT_SEM_TAKE(params); mini_ctrl_cmd = 0; mini_ctrl_cmd |= PAGE_WRITE_10H_CMD; mini_ctrl_cmd |= GCMD_TWB_VALUE; mini_ctrl_cmd |= PAGE_CMOD_CMD; ret = cdns_generic_send_cmd(params, mini_ctrl_cmd); if (ret != 0) { return ret; } NAND_INT_SEM_TAKE(params); ret = cdns_wait_sdma(base_address); return ret; } /** * Perform a generic read or write operation for a range of pages in the Cadence NAND controller. * * @param params The Cadence NAND parameters structure. * @param start_page_number The starting page number for the read or write operation. * @param buffer The buffer containing the data to be written or to store the read data. * @param page_count The number of pages to be read or written. * @param mode The mode of operation (read, write). * @retval 0 on success or negative error value on failure. */ static int cdns_nand_gen_read_write(struct cadence_nand_params *params, uint32_t start_page_number, char *buffer, uint32_t page_count, uint8_t mode) { uint64_t address = 0; uint32_t index = 0; uint32_t gen_row_address = 0; int ret = 0; for (index = 0; index < page_count; index++) { row_address_set(params, &gen_row_address, start_page_number++); address = ((uint64_t)gen_row_address); if (mode == CDNS_READ) { ret = cdns_generic_page_read(params, address, buffer + (index * (params->page_size))); if (ret != 0) { LOG_ERR("Cadence NAND Generic Page Read Error!!"); return ret; } } else { ret = cdns_generic_page_write(params, address, buffer + (index * (params->page_size))); if (ret != 0) { LOG_ERR("Cadence NAND Generic Page write Error!!"); return ret; } } } return 0; } /** * Perform a generic erase operation for a range of blocks in the Cadence NAND controller. * * @param params The Cadence NAND parameters structure. * @param start_block The starting block number for the erase operation. * @param block_count The number of blocks to be erased. * @retval 0 on success or -ETIMEDOUT error value on failure. */ static int cdns_nand_gen_erase(struct cadence_nand_params *params, uint32_t start_block, uint32_t block_count) { uint64_t mini_ctrl_cmd = 0; uintptr_t base_address = 0; uint32_t gen_row_address = 0; uint32_t index = 0; int ret = 0; for (index = 0; index < block_count; index++) { row_address_set(params, &gen_row_address, (start_block * params->npages_per_block)); start_block++; base_address = params->nand_base; mini_ctrl_cmd |= GCMD_TWB_VALUE; mini_ctrl_cmd |= ERASE_ADDR_SIZE; mini_ctrl_cmd |= ((gen_row_address) & (U32_MASK_VAL)); mini_ctrl_cmd |= PAGE_ERASE_CMD; ret = cdns_generic_send_cmd(params, mini_ctrl_cmd); if (ret != 0) { return ret; } NAND_INT_SEM_TAKE(params); } return 0; } #endif /** * Read data from the Cadence NAND controller into a buffer. */ static inline int cdns_read_data(struct cadence_nand_params *params, uint32_t start_page_number, const void *buffer, uint32_t page_count) { int ret; #if CONFIG_CDNS_NAND_CDMA_MODE ret = cdns_nand_cdma_read(params, start_page_number, (char *)buffer, page_count); #elif CONFIG_CDNS_NAND_PIO_MODE ret = cdns_nand_pio_read_write(params, start_page_number, (char *)buffer, page_count, CDNS_READ); #elif CONFIG_CDNS_NAND_GENERIC_MODE ret = cdns_nand_gen_read_write(params, start_page_number, (char *)buffer, page_count, CDNS_READ); #endif return ret; } /** * Read data from the Cadence NAND controller into a buffer. * * @param params The Cadence NAND parameters structure. * @param buffer The buffer to store the read data. * @param offset The offset within the NAND to start reading from. * @param size The size of the data to read. * @retval 0 on success or negative error value on failure. */ int cdns_nand_read(struct cadence_nand_params *params, const void *buffer, uint32_t offset, uint32_t size) { uint32_t start_page_number; uint32_t end_page_number; uint32_t page_count; int ret = 0; uint16_t r_bytes; uint16_t bytes_dif; uint16_t lp_bytes_dif; uint8_t check_page_first = 0; uint8_t check_page_last = 0; uint8_t *first_end_page; uint8_t *last_end_page; if (params == NULL) { LOG_ERR("Wrong parameter passed!!"); return -EINVAL; } if (size == 0) { return 0; } if ((offset >= params->device_size) || (size > (params->device_size - offset))) { LOG_ERR("Wrong offset or size value passed!!"); return -EINVAL; } start_page_number = offset / (params->page_size); end_page_number = ((offset + size) - 1) / ((params->page_size)); if ((offset % params->page_size) == 0) { check_page_first = 1; } if (((offset + size) % params->page_size) == 0) { check_page_last = 1; } page_count = end_page_number - start_page_number; page_count++; if ((check_page_last == 1) && (check_page_first == 1)) { ret = cdns_read_data(params, start_page_number, (char *)buffer, page_count); if (ret != 0) { return ret; } } else if (((check_page_last == 0) && (check_page_first == 1) && (page_count == 1)) || ((check_page_last == 0) && (check_page_first == 0) && (page_count == 1)) || ((check_page_last == 1) && (check_page_first == 0) && (page_count == 1))) { first_end_page = (char *)k_malloc(sizeof(char) * (params->page_size)); if (first_end_page != NULL) { memset(first_end_page, 0xFF, sizeof(char) * (params->page_size)); } else { LOG_ERR("Memory allocation error occurred %s", __func__); return -ENOSR; } ret = cdns_read_data(params, start_page_number, first_end_page, page_count); if (ret != 0) { k_free(first_end_page); return ret; } memcpy((char *)buffer, first_end_page + (offset % (params->page_size)), size); k_free(first_end_page); } else if (((check_page_last == 0) && (check_page_first == 1) && (page_count == 2)) || ((check_page_last == 0) && (check_page_first == 0) && (page_count == 2)) || ((check_page_last == 1) && (check_page_first == 0) && (page_count == 2))) { first_end_page = (char *)k_malloc(sizeof(char) * (params->page_size * 2)); if (first_end_page != NULL) { memset(first_end_page, 0xFF, sizeof(char) * (params->page_size * 2)); } else { LOG_ERR("Memory allocation error occurred %s", __func__); return -ENOSR; } ret = cdns_read_data(params, start_page_number, first_end_page, page_count); if (ret < 0) { k_free(first_end_page); return ret; } memcpy((char *)buffer, first_end_page + (offset % (params->page_size)), size); k_free(first_end_page); } else if ((check_page_last == 0) && (check_page_first == 1) && (page_count > 2)) { first_end_page = (char *)k_malloc(sizeof(char) * (params->page_size)); if (first_end_page != NULL) { memset(first_end_page, 0xFF, sizeof(char) * (params->page_size)); } else { LOG_ERR("Memory allocation error occurred %s", __func__); return -ENOSR; } ret = cdns_read_data(params, end_page_number, first_end_page, 1); if (ret < 0) { k_free(first_end_page); return ret; } r_bytes = (offset + size) % (params->page_size); ret = cdns_read_data(params, start_page_number, (char *)buffer, (--page_count)); if (ret != 0) { k_free(first_end_page); return ret; } memcpy((char *)buffer + ((page_count - 1) * params->page_size), first_end_page, r_bytes); k_free(first_end_page); } else if ((check_page_last == 1) && (check_page_first == 0) && (page_count > 2)) { first_end_page = (char *)k_malloc(sizeof(char) * (params->page_size)); if (first_end_page != NULL) { memset(first_end_page, 0xFF, sizeof(char) * (params->page_size)); } else { LOG_ERR("Memory allocation error occurred %s", __func__); return -ENOSR; } ret = cdns_read_data(params, start_page_number, first_end_page, 1); if (ret < 0) { k_free(first_end_page); return ret; } r_bytes = (offset) % (params->page_size); bytes_dif = (((start_page_number + 1) * params->page_size) - r_bytes); r_bytes = (offset + size) % (params->page_size); ret = cdns_read_data(params, (++start_page_number), ((char *)buffer + bytes_dif), (--page_count)); if (ret != 0) { k_free(first_end_page); return ret; } memcpy((char *)buffer, first_end_page + r_bytes, bytes_dif); k_free(first_end_page); } else if ((check_page_last == 0) && (check_page_first == 0) && (page_count > 2)) { first_end_page = (char *)k_malloc(sizeof(char) * (params->page_size)); last_end_page = (char *)k_malloc(sizeof(char) * (params->page_size)); if ((first_end_page != NULL) && (last_end_page != NULL)) { memset(first_end_page, 0xFF, sizeof(char) * (params->page_size)); memset(last_end_page, 0xFF, sizeof(char) * (params->page_size)); } else { LOG_ERR("Memory allocation error occurred %s", __func__); return -ENOSR; } ret = cdns_read_data(params, start_page_number, first_end_page, 1); if (ret != 0) { k_free(first_end_page); k_free(last_end_page); return ret; } r_bytes = (offset) % (params->page_size); bytes_dif = (((start_page_number + 1) * params->page_size) - r_bytes); lp_bytes_dif = (offset + size) % (params->page_size); ret = cdns_read_data(params, end_page_number, last_end_page, 1); if (ret != 0) { k_free(last_end_page); k_free(first_end_page); return ret; } r_bytes = (offset + size) % (params->page_size); ret = cdns_read_data(params, (++start_page_number), ((char *)buffer + bytes_dif), (page_count - 2)); if (ret != 0) { k_free(last_end_page); k_free(first_end_page); return ret; } memcpy((char *)buffer, first_end_page + r_bytes, bytes_dif); memcpy(((char *)buffer + bytes_dif + ((page_count - 2) * (params->npages_per_block))), last_end_page, lp_bytes_dif); } return 0; } /** * Write data from a buffer to the Cadence NAND controller. * * @param params The Cadence NAND parameters structure. * @param buffer The buffer containing the data to be written. * @param offset The offset within the NAND to start writing to. * @param len The length of the data to write. * @retval 0 on success or negative error value on failure. */ int cdns_nand_write(struct cadence_nand_params *params, const void *buffer, uint32_t offset, uint32_t len) { uint32_t start_page_number; uint32_t end_page_number; uint32_t page_count; int ret = 0; if (params == NULL) { LOG_ERR("Wrong parameter passed!!"); return -EINVAL; } if (len == 0) { return 0; } if ((offset >= params->device_size) || (len > (params->device_size - offset))) { LOG_ERR("Wrong offset or len value passed!!"); return -EINVAL; } if ((offset % params->page_size) != 0) { LOG_ERR("offset not page aligned!!! Page size = 0x%x", params->page_size); return -EINVAL; } if ((len % params->page_size) != 0) { LOG_ERR("length not page aligned!!! Page size = 0x%x", params->page_size); return -EINVAL; } start_page_number = offset / (params->page_size); end_page_number = ((offset + len) - 1) / ((params->page_size)); page_count = end_page_number - start_page_number; #if CONFIG_CDNS_NAND_CDMA_MODE ret = cdns_nand_cdma_write(params, start_page_number, (char *)buffer, ++page_count); #elif CONFIG_CDNS_NAND_PIO_MODE ret = cdns_nand_pio_read_write(params, start_page_number, (char *)buffer, ++page_count, CDNS_WRITE); #elif CONFIG_CDNS_NAND_GENERIC_MODE ret = cdns_nand_gen_read_write(params, start_page_number, (char *)buffer, ++page_count, CDNS_WRITE); #endif if (ret != 0) { LOG_ERR("Cadence driver write Failed!!!"); } return ret; } /** * Perform an erase operation on the Cadence NAND controller. * * @param params The Cadence NAND parameters structure. * @param offset The offset within the NAND to start erasing. * @param size The size of the data to erase. * @retval 0 on success or negative error value on failure. */ int cdns_nand_erase(struct cadence_nand_params *params, uint32_t offset, uint32_t size) { uint32_t start_block_number; uint32_t end_block_number; uint32_t block_count; int ret; if (params == NULL) { LOG_ERR("Wrong parameter passed!!"); return -EINVAL; } if (size == 0) { return 0; } if ((offset >= params->device_size) || (size > (params->device_size - offset))) { LOG_ERR("Wrong offset or size value passed!!"); return -EINVAL; } if ((offset % (params->block_size)) != 0) { LOG_ERR("Offset value not aligned with block size!! Erase block size = %x", params->block_size); return -EINVAL; } if ((size % (params->block_size)) != 0) { LOG_ERR("Length value not aligned with block size!! Erase block size = %x", params->block_size); return -EINVAL; } start_block_number = (offset / ((params->page_size))) / (params->npages_per_block); end_block_number = (((offset + size) - 1) / ((params->page_size))) / (params->npages_per_block); block_count = end_block_number - start_block_number; #if CONFIG_CDNS_NAND_CDMA_MODE ret = cdns_nand_cdma_erase(params, start_block_number, ++block_count); #elif CONFIG_CDNS_NAND_PIO_MODE ret = cdns_nand_pio_erase(params, NF_TDEF_TRD_NUM, NF_TDEF_DEV_NUM, start_block_number, CNF_CMD_ERASE, ++block_count); #elif CONFIG_CDNS_NAND_GENERIC_MODE ret = cdns_nand_gen_erase(params, start_block_number, ++block_count); #endif if (ret != 0) { LOG_ERR("Cadence driver Erase Failed!!!"); } return ret; } #if CONFIG_CDNS_NAND_INTERRUPT_SUPPORT void cdns_nand_irq_handler_ll(struct cadence_nand_params *params) { uint32_t status = 0; uint8_t thread_num = 0; status = sys_read32(params->nand_base + THREAD_INTERRUPT_STATUS); thread_num = find_lsb_set(status); if (GET_INIT_SET_CHECK(status, (thread_num - 1)) != 0) { /* Clear the interrupt*/ sys_write32(BIT((thread_num - 1)), params->nand_base + THREAD_INTERRUPT_STATUS); } } #endif