/* nanokernel dynamic-size FIFO queue object */ /* * Copyright (c) 2010-2015 Wind River Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2) Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3) Neither the name of Wind River Systems nor the names of its contributors * may be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* DESCRIPTION This module provides the VxMicro nanokernel (aka system-level) 'fifo' implementation. This module provides the backing implementation for the following APIs: nano_fifo_init nano_fiber_fifo_put, nano_task_fifo_put, nano_isr_fifo_put nano_fiber_fifo_get, nano_task_fifo_get, nano_isr_fifo_get nano_fiber_fifo_get_wait, nano_task_fifo_get_wait INTERNAL In some cases the compiler "alias" attribute is used to map two or more APIs to the same function, since they have identical implementations. */ #include #include #include #include /******************************************************************************* * * nano_fifo_init - initialize a nanokernel multiple-waiter fifo (fifo) object * * This function initializes a nanokernel multiple-waiter fifo (fifo) object * structure. * * It may be called from either a fiber or task context. * * RETURNS: N/A * * INTERNAL * Although the existing implementation will support invocation from an ISR * context, for future flexibility, this API will be restricted from ISR * level invocation. */ void nano_fifo_init( struct nano_fifo *fifo /* fifo to initialize */ ) { /* * The wait queue and data queue occupy the same space since there cannot * be both queued data and pending fibers in the FIFO. Care must be taken * that, when one of the queues becomes empty, it is reset to a state * that reflects an empty queue to both the data and wait queues. */ _nano_wait_q_init(&fifo->wait_q); /* * If the 'stat' field is a positive value, it indicates how many data * elements reside in the FIFO. If the 'stat' field is a negative value, * its absolute value indicates how many fibers are pending on the LIFO * object. Thus a value of '0' indicates that there are no data elements * in the LIFO _and_ there are no pending fibers. */ fifo->stat = 0; } FUNC_ALIAS(_fifo_put_non_preemptible, nano_isr_fifo_put, void); FUNC_ALIAS(_fifo_put_non_preemptible, nano_fiber_fifo_put, void); /******************************************************************************* * * enqueue_data - internal routine to append data to a fifo * * RETURNS: N/A */ static inline void enqueue_data(struct nano_fifo *fifo, void *data) { *(void **)fifo->data_q.tail = data; fifo->data_q.tail = data; *(int *)data = 0; } /******************************************************************************* * * _fifo_put_non_preemptible - append an element to a fifo (no context switch) * * This routine adds an element to the end of a fifo object; it may be called * from either either a fiber or an ISR context. A fiber pending on the fifo * object will be made ready, but will NOT be scheduled to execute. * * If a fiber is waiting on the fifo, the address of the element is returned to * the waiting fiber. Otherwise, the element is linked to the end of the list. * * RETURNS: N/A * * INTERNAL * This function is capable of supporting invocations from both a fiber and an * ISR context. However, the nano_isr_fifo_put and nano_fiber_fifo_put aliases * are created to support any required implementation differences in the future * without introducing a source code migration issue. */ void _fifo_put_non_preemptible( struct nano_fifo *fifo, /* fifo on which to interact */ void *data /* data to send */ ) { unsigned int imask; imask = irq_lock_inline(); fifo->stat++; if (fifo->stat <= 0) { tCCS *ccs = _nano_wait_q_remove_no_check(&fifo->wait_q); fiberRtnValueSet(ccs, (unsigned int)data); } else { enqueue_data(fifo, data); } irq_unlock_inline(imask); } /******************************************************************************* * * nano_task_fifo_put - add an element to the end of a fifo * * This routine adds an element to the end of a fifo object; it can be called * from only a task context. A fiber pending on the fifo object will be made * ready, and will preempt the running task immediately. * * If a fiber is waiting on the fifo, the address of the element is returned to * the waiting fiber. Otherwise, the element is linked to the end of the list. * * RETURNS: N/A */ void nano_task_fifo_put( struct nano_fifo *fifo, /* fifo on which to interact */ void *data /* data to send */ ) { unsigned int imask; imask = irq_lock_inline(); fifo->stat++; if (fifo->stat <= 0) { tCCS *ccs = _nano_wait_q_remove_no_check(&fifo->wait_q); fiberRtnValueSet(ccs, (unsigned int)data); _Swap(imask); return; } else { enqueue_data(fifo, data); } irq_unlock_inline(imask); } /******************************************************************************* * * nano_fifo_put - add an element to the end of a fifo * * This is a convenience wrapper for the context-specific APIs. This is * helpful whenever the exact scheduling context is not known, but should * be avoided when the context is known up-front (to avoid unnecessary * overhead). */ void nano_fifo_put(struct nano_fifo *fifo, void *data) { static void (*func[3])(struct nano_fifo *fifo, void *data) = { nano_isr_fifo_put, nano_fiber_fifo_put, nano_task_fifo_put }; func[context_type_get()](fifo, data); } FUNC_ALIAS(_fifo_get, nano_isr_fifo_get, void *); FUNC_ALIAS(_fifo_get, nano_fiber_fifo_get, void *); FUNC_ALIAS(_fifo_get, nano_task_fifo_get, void *); FUNC_ALIAS(_fifo_get, nano_fifo_get, void *); /******************************************************************************* * * dequeue_data - internal routine to remove data from a fifo * * RETURNS: the data item removed */ static inline void *dequeue_data(struct nano_fifo *fifo) { void *data = fifo->data_q.head; if (fifo->stat == 0) { /* * The data_q and wait_q occupy the same space and have the same * format, and there is already an API for resetting the wait_q, so * use it. */ _nano_wait_q_reset(&fifo->wait_q); } else { fifo->data_q.head = *(void **)data; } return data; } /******************************************************************************* * * _fifo_get - get an element from the head a fifo * * Remove the head element from the specified nanokernel multiple-waiter fifo * linked list fifo; it may be called from a fiber, task, or ISR context. * * If no elements are available, NULL is returned. The first word in the * element contains invalid data because that memory location was used to store * a pointer to the next element in the linked list. * * RETURNS: Pointer to head element in the list if available, otherwise NULL * * INTERNAL * This function is capable of supporting invocations from fiber, task, and ISR * contexts. However, the nano_isr_fifo_get, nano_task_fifo_get, and * nano_fiber_fifo_get aliases are created to support any required * implementation differences in the future without introducing a source code * migration issue. */ void *_fifo_get( struct nano_fifo *fifo /* fifo on which to interact */ ) { void *data = NULL; unsigned int imask; imask = irq_lock_inline(); if (fifo->stat > 0) { fifo->stat--; data = dequeue_data(fifo); } irq_unlock_inline(imask); return data; } /******************************************************************************* * * nano_fiber_fifo_get_wait - get the head element of a fifo, wait if emtpy * * Remove the head element from the specified system-level multiple-waiter * fifo; it can only be called from a fiber context. * * If no elements are available, the calling fiber will pend until an element * is put onto the fifo. * * The first word in the element contains invalid data because that memory * location was used to store a pointer to the next element in the linked list. * * RETURNS: Pointer to head element in the list * * INTERNAL There exists a separate nano_task_fifo_get_wait() implementation * since a task context cannot pend on a nanokernel object. Instead tasks will * poll the fifo object. */ void *nano_fiber_fifo_get_wait( struct nano_fifo *fifo /* fifo on which to interact */ ) { void *data; unsigned int imask; imask = irq_lock_inline(); fifo->stat--; if (fifo->stat < 0) { _nano_wait_q_put(&fifo->wait_q); data = (void *)_Swap(imask); } else { data = dequeue_data(fifo); irq_unlock_inline(imask); } return data; } /******************************************************************************* * * nano_task_fifo_get_wait - get the head element of a fifo, poll if empty * * Remove the head element from the specified system-level multiple-waiter * fifo; it can only be called from a task context. * * If no elements are available, the calling task will poll until an * until an element is put onto the fifo. * * The first word in the element contains invalid data because that memory * location was used to store a pointer to the next element in the linked list. * * RETURNS: Pointer to head element in the list */ void *nano_task_fifo_get_wait( struct nano_fifo *fifo /* fifo on which to interact */ ) { void *data; unsigned int imask; /* spin until data is put onto the FIFO */ while (1) { imask = irq_lock_inline(); /* * Predict that the branch will be taken to break out of the loop. * There is little cost to a misprediction since that leads to idle. */ if (likely(fifo->stat > 0)) break; /* see explanation in nano_stack.c:nano_task_stack_pop_wait() */ nano_cpu_atomic_idle(imask); } fifo->stat--; data = dequeue_data(fifo); irq_unlock_inline(imask); return data; } /******************************************************************************* * * nano_fifo_get_wait - get the head element of a fifo, poll/pend if empty * * This is a convenience wrapper for the context-specific APIs. This is * helpful whenever the exact scheduling context is not known, but should * be avoided when the context is known up-front (to avoid unnecessary * overhead). * * It's only valid to call this API from a fiber or a task. */ void *nano_fifo_get_wait(struct nano_fifo *fifo) { static void *(*func[3])(struct nano_fifo *fifo) = { NULL, nano_fiber_fifo_get_wait, nano_task_fifo_get_wait }; return func[context_type_get()](fifo); }