/* * Copyright (c) 2016 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include /* private kernel APIs */ #include #include #ifdef CONFIG_OBJ_CORE_MEM_SLAB static struct k_obj_type obj_type_mem_slab; #ifdef CONFIG_OBJ_CORE_STATS_MEM_SLAB static int k_mem_slab_stats_raw(struct k_obj_core *obj_core, void *stats) { __ASSERT((obj_core != NULL) && (stats != NULL), "NULL parameter"); struct k_mem_slab *slab; k_spinlock_key_t key; slab = CONTAINER_OF(obj_core, struct k_mem_slab, obj_core); key = k_spin_lock(&slab->lock); memcpy(stats, &slab->info, sizeof(slab->info)); k_spin_unlock(&slab->lock, key); return 0; } static int k_mem_slab_stats_query(struct k_obj_core *obj_core, void *stats) { __ASSERT((obj_core != NULL) && (stats != NULL), "NULL parameter"); struct k_mem_slab *slab; k_spinlock_key_t key; struct sys_memory_stats *ptr = stats; slab = CONTAINER_OF(obj_core, struct k_mem_slab, obj_core); key = k_spin_lock(&slab->lock); ptr->free_bytes = (slab->info.num_blocks - slab->info.num_used) * slab->info.block_size; ptr->allocated_bytes = slab->info.num_used * slab->info.block_size; #ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION ptr->max_allocated_bytes = slab->info.max_used * slab->info.block_size; #else ptr->max_allocated_bytes = 0; #endif k_spin_unlock(&slab->lock, key); return 0; } static int k_mem_slab_stats_reset(struct k_obj_core *obj_core) { __ASSERT(obj_core != NULL, "NULL parameter"); struct k_mem_slab *slab; k_spinlock_key_t key; slab = CONTAINER_OF(obj_core, struct k_mem_slab, obj_core); key = k_spin_lock(&slab->lock); #ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION slab->info.max_used = slab->info.num_used; #endif k_spin_unlock(&slab->lock, key); return 0; } static struct k_obj_core_stats_desc mem_slab_stats_desc = { .raw_size = sizeof(struct k_mem_slab_info), .query_size = sizeof(struct sys_memory_stats), .raw = k_mem_slab_stats_raw, .query = k_mem_slab_stats_query, .reset = k_mem_slab_stats_reset, .disable = NULL, .enable = NULL, }; #endif #endif /** * @brief Initialize kernel memory slab subsystem. * * Perform any initialization of memory slabs that wasn't done at build time. * Currently this just involves creating the list of free blocks for each slab. * * @retval 0 on success. * @retval -EINVAL if @p slab contains invalid configuration and/or values. */ static int create_free_list(struct k_mem_slab *slab) { uint32_t j; char *p; /* blocks must be word aligned */ CHECKIF(((slab->info.block_size | (uintptr_t)slab->buffer) & (sizeof(void *) - 1)) != 0U) { return -EINVAL; } slab->free_list = NULL; p = slab->buffer; for (j = 0U; j < slab->info.num_blocks; j++) { *(char **)p = slab->free_list; slab->free_list = p; p += slab->info.block_size; } return 0; } /** * @brief Complete initialization of statically defined memory slabs. * * Perform any initialization that wasn't done at build time. * * @return 0 on success, fails otherwise. */ static int init_mem_slab_obj_core_list(void) { int rc = 0; /* Initialize mem_slab object type */ #ifdef CONFIG_OBJ_CORE_MEM_SLAB z_obj_type_init(&obj_type_mem_slab, K_OBJ_TYPE_MEM_SLAB_ID, offsetof(struct k_mem_slab, obj_core)); #ifdef CONFIG_OBJ_CORE_STATS_MEM_SLAB k_obj_type_stats_init(&obj_type_mem_slab, &mem_slab_stats_desc); #endif #endif /* Initialize statically defined mem_slabs */ STRUCT_SECTION_FOREACH(k_mem_slab, slab) { rc = create_free_list(slab); if (rc < 0) { goto out; } z_object_init(slab); #ifdef CONFIG_OBJ_CORE_MEM_SLAB k_obj_core_init_and_link(K_OBJ_CORE(slab), &obj_type_mem_slab); #ifdef CONFIG_OBJ_CORE_STATS_MEM_SLAB k_obj_core_stats_register(K_OBJ_CORE(slab), &slab->info, sizeof(struct k_mem_slab_info)); #endif #endif } out: return rc; } SYS_INIT(init_mem_slab_obj_core_list, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks) { int rc = 0; slab->info.num_blocks = num_blocks; slab->info.block_size = block_size; slab->buffer = buffer; slab->info.num_used = 0U; slab->lock = (struct k_spinlock) {}; #ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION slab->info.max_used = 0U; #endif rc = create_free_list(slab); if (rc < 0) { goto out; } #ifdef CONFIG_OBJ_CORE_MEM_SLAB k_obj_core_init_and_link(K_OBJ_CORE(slab), &obj_type_mem_slab); #endif #ifdef CONFIG_OBJ_CORE_STATS_MEM_SLAB k_obj_core_stats_register(K_OBJ_CORE(slab), &slab->info, sizeof(struct k_mem_slab_info)); #endif z_waitq_init(&slab->wait_q); z_object_init(slab); out: SYS_PORT_TRACING_OBJ_INIT(k_mem_slab, slab, rc); return rc; } int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout) { k_spinlock_key_t key = k_spin_lock(&slab->lock); int result; SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_mem_slab, alloc, slab, timeout); if (slab->free_list != NULL) { /* take a free block */ *mem = slab->free_list; slab->free_list = *(char **)(slab->free_list); slab->info.num_used++; #ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION slab->info.max_used = MAX(slab->info.num_used, slab->info.max_used); #endif result = 0; } else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT) || !IS_ENABLED(CONFIG_MULTITHREADING)) { /* don't wait for a free block to become available */ *mem = NULL; result = -ENOMEM; } else { SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_mem_slab, alloc, slab, timeout); /* wait for a free block or timeout */ result = z_pend_curr(&slab->lock, key, &slab->wait_q, timeout); if (result == 0) { *mem = _current->base.swap_data; } SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mem_slab, alloc, slab, timeout, result); return result; } SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mem_slab, alloc, slab, timeout, result); k_spin_unlock(&slab->lock, key); return result; } void k_mem_slab_free(struct k_mem_slab *slab, void *mem) { k_spinlock_key_t key = k_spin_lock(&slab->lock); __ASSERT(((char *)mem >= slab->buffer) && ((((char *)mem - slab->buffer) % slab->info.block_size) == 0) && ((char *)mem <= (slab->buffer + (slab->info.block_size * (slab->info.num_blocks - 1)))), "Invalid memory pointer provided"); SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_mem_slab, free, slab); if (slab->free_list == NULL && IS_ENABLED(CONFIG_MULTITHREADING)) { struct k_thread *pending_thread = z_unpend_first_thread(&slab->wait_q); if (pending_thread != NULL) { SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mem_slab, free, slab); z_thread_return_value_set_with_data(pending_thread, 0, mem); z_ready_thread(pending_thread); z_reschedule(&slab->lock, key); return; } } *(char **) mem = slab->free_list; slab->free_list = (char *) mem; slab->info.num_used--; SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mem_slab, free, slab); k_spin_unlock(&slab->lock, key); } int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats) { if ((slab == NULL) || (stats == NULL)) { return -EINVAL; } k_spinlock_key_t key = k_spin_lock(&slab->lock); stats->allocated_bytes = slab->info.num_used * slab->info.block_size; stats->free_bytes = (slab->info.num_blocks - slab->info.num_used) * slab->info.block_size; #ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION stats->max_allocated_bytes = slab->info.max_used * slab->info.block_size; #else stats->max_allocated_bytes = 0; #endif k_spin_unlock(&slab->lock, key); return 0; } #ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab) { if (slab == NULL) { return -EINVAL; } k_spinlock_key_t key = k_spin_lock(&slab->lock); slab->info.max_used = slab->info.num_used; k_spin_unlock(&slab->lock, key); return 0; } #endif