/* * Copyright (c) 2024 Nordic Semiconductor ASA. * * SPDX-License-Identifier: Apache-2.0 */ #include #include #if defined(CONFIG_CPU_CORTEX_M) && \ !defined(CONFIG_CPU_CORTEX_M0) && \ !defined(CONFIG_CPU_CORTEX_M0PLUS) #define UNALIGNED_ACCESS_SUPPORTED 1 #else #define UNALIGNED_ACCESS_SUPPORTED 0 #endif enum stp_state { STP_STATE_OP, STP_STATE_DATA, STP_STATE_TS, STP_STATE_OUT_OF_SYNC, }; enum stp_id { STP_NULL, STP_M8, STP_MERR, STP_C8, STP_D8, STP_D16, STP_D32, STP_D64, STP_D8MTS, STP_D16MTS, STP_D32MTS, STP_D64MTS, STP_D4, STP_D4MTS, STP_FLAG_TS, STP_VERSION, STP_TAG_3NIBBLE_OP = STP_VERSION, STP_NULL_TS, STP_USER, STP_USER_TS, STP_TIME, STP_TIME_TS, STP_TRIG, STP_TRIG_TS, STP_FREQ, STP_FREQ_TS, STP_XSYNC, STP_XSYNC_TS, STP_FREQ_40, STP_TAG_4NIBBLE_OP = STP_FREQ_40, STP_FREQ_40_TS, STP_DIP, STP_M16, STP_TAG_2NIBBLE_OP = STP_M16, STP_GERR, STP_C16, STP_D8TS, STP_D16TS, STP_D32TS, STP_D64TS, STP_D8M, STP_D16M, STP_D32M, STP_D64M, STP_D4TS, STP_D4M, STP_FLAG, STP_ASYNC, STP_INVALID, STP_OP_MAX }; #define STP_LONG_OP_ID 0xF #define STP_2B_OP_ID 0xF0 #define STP_VAR_DATA 0xff typedef void (*stp_cb)(uint64_t data, uint64_t ts); struct stp_item { const char *name; enum stp_id type; uint8_t id[3]; uint8_t id_ncnt; uint8_t d_ncnt; bool has_ts; stp_cb cb; }; #define STP_ITEM(_type, _id, _id_ncnt, _d_ncnt, _has_ts, _cb) \ { \ .name = STRINGIFY(_type), .type = _type, .id = {__DEBRACKET _id}, \ .id_ncnt = _id_ncnt, .d_ncnt = _d_ncnt, \ .has_ts = _has_ts, .cb = (stp_cb)_cb \ } static struct mipi_stp_decoder_config cfg; static uint64_t prev_ts; static uint64_t base_ts; static enum stp_state state; static size_t ntotal; static size_t ncnt; static size_t noff; static uint16_t curr_ch; static void data4_cb(uint64_t data, uint64_t ts) { ARG_UNUSED(ts); union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA4, d, NULL, false); } static void data8_cb(uint64_t data, uint64_t ts) { ARG_UNUSED(ts); union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA8, d, NULL, false); } static void data16_cb(uint64_t data, uint64_t ts) { ARG_UNUSED(ts); union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA16, d, NULL, false); } static void data32_cb(uint64_t data, uint64_t ts) { ARG_UNUSED(ts); union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA32, d, NULL, false); } static void data64_cb(uint64_t data, uint64_t ts) { ARG_UNUSED(ts); union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA64, d, NULL, false); } static void data4_m_cb(uint64_t data, uint64_t ts) { ARG_UNUSED(ts); union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA4, d, NULL, true); } static void data8_m_cb(uint64_t data, uint64_t ts) { ARG_UNUSED(ts); union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA8, d, NULL, true); } static void data16_m_cb(uint64_t data, uint64_t ts) { ARG_UNUSED(ts); union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA16, d, NULL, true); } static void data32_m_cb(uint64_t data, uint64_t ts) { ARG_UNUSED(ts); union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA32, d, NULL, true); } static void data64_m_cb(uint64_t data, uint64_t ts) { ARG_UNUSED(ts); union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA64, d, NULL, true); } static void data4_ts_cb(uint64_t data, uint64_t ts) { union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA4, d, &ts, false); } static void data8_ts_cb(uint64_t data, uint64_t ts) { union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA8, d, &ts, false); } static void data16_ts_cb(uint64_t data, uint64_t ts) { union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA16, d, &ts, false); } static void data32_ts_cb(uint64_t data, uint64_t ts) { union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA32, d, &ts, false); } static void data64_ts_cb(uint64_t data, uint64_t ts) { union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA64, d, &ts, false); } static void data4_mts_cb(uint64_t data, uint64_t ts) { union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA4, d, &ts, true); } static void data8_mts_cb(uint64_t data, uint64_t ts) { union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA8, d, &ts, true); } static void data16_mts_cb(uint64_t data, uint64_t ts) { union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA16, d, &ts, true); } static void data32_mts_cb(uint64_t data, uint64_t ts) { union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA32, d, &ts, true); } static void data64_mts_cb(uint64_t data, uint64_t ts) { union mipi_stp_decoder_data d = {.data = data}; cfg.cb(STP_DATA64, d, &ts, true); } static void major_cb(uint64_t id, uint64_t ts) { ARG_UNUSED(ts); uint16_t m_id = (uint16_t)id; union mipi_stp_decoder_data data = {.id = m_id}; curr_ch = 0; cfg.cb(STP_DECODER_MAJOR, data, NULL, false); } static void channel16_cb(uint64_t id, uint64_t ts) { uint16_t ch = (uint16_t)id; curr_ch = 0xFF00 & ch; ARG_UNUSED(ts); union mipi_stp_decoder_data data = {.id = ch}; cfg.cb(STP_DECODER_CHANNEL, data, NULL, false); } static void channel_cb(uint64_t id, uint64_t ts) { uint16_t ch = (uint16_t)id; ch |= curr_ch; ARG_UNUSED(ts); union mipi_stp_decoder_data data = {.id = ch}; cfg.cb(STP_DECODER_CHANNEL, data, NULL, false); } static void merror_cb(uint64_t err, uint64_t ts) { ARG_UNUSED(ts); union mipi_stp_decoder_data data = {.err = (uint32_t)err}; cfg.cb(STP_DECODER_MERROR, data, NULL, false); } static void gerror_cb(uint64_t err, uint64_t ts) { ARG_UNUSED(ts); union mipi_stp_decoder_data data = {.err = (uint32_t)err}; cfg.cb(STP_DECODER_GERROR, data, NULL, false); } static void flag_cb(uint64_t data, uint64_t ts) { ARG_UNUSED(ts); ARG_UNUSED(data); union mipi_stp_decoder_data dummy = {.dummy = 0}; cfg.cb(STP_DECODER_FLAG, dummy, NULL, false); } static void flag_ts_cb(uint64_t unused, uint64_t ts) { ARG_UNUSED(unused); union mipi_stp_decoder_data data = {.dummy = 0}; cfg.cb(STP_DECODER_FLAG, data, &ts, false); } static void version_cb(uint64_t version, uint64_t ts) { ARG_UNUSED(ts); curr_ch = 0; union mipi_stp_decoder_data data = {.ver = version}; cfg.cb(STP_DECODER_VERSION, data, NULL, false); } static void notsup_cb(uint64_t data, uint64_t ts) { ARG_UNUSED(ts); ARG_UNUSED(data); union mipi_stp_decoder_data dummy = {.dummy = 0}; cfg.cb(STP_DECODER_NOT_SUPPORTED, dummy, NULL, false); } static void freq_cb(uint64_t freq, uint64_t ts) { ARG_UNUSED(ts); union mipi_stp_decoder_data data = {.freq = freq}; cfg.cb(STP_DECODER_FREQ, data, NULL, false); } static void freq_ts_cb(uint64_t freq, uint64_t ts) { union mipi_stp_decoder_data data = {.freq = freq}; cfg.cb(STP_DECODER_FREQ, data, &ts, false); } static void null_cb(uint64_t data, uint64_t ts) { ARG_UNUSED(ts); ARG_UNUSED(data); union mipi_stp_decoder_data dummy = {.dummy = 0}; cfg.cb(STP_DECODER_NULL, dummy, NULL, false); } static void async_cb(uint64_t data, uint64_t ts) { ARG_UNUSED(ts); ARG_UNUSED(data); union mipi_stp_decoder_data dummy = {.dummy = 0}; cfg.cb(STP_DECODER_ASYNC, dummy, NULL, false); } static const struct stp_item items[] = { STP_ITEM(STP_NULL, (0x0), 1, 0, false, null_cb), STP_ITEM(STP_M8, (0x1), 1, 2, false, major_cb), STP_ITEM(STP_MERR, (0x2), 1, 2, false, merror_cb), STP_ITEM(STP_C8, (0x3), 1, 2, false, channel_cb), STP_ITEM(STP_D8, (0x4), 1, 2, false, data8_cb), STP_ITEM(STP_D16, (0x5), 1, 4, false, data16_cb), STP_ITEM(STP_D32, (0x6), 1, 8, false, data32_cb), STP_ITEM(STP_D64, (0x7), 1, 16, false, data64_cb), STP_ITEM(STP_D8MTS, (0x8), 1, 2, true, data8_mts_cb), STP_ITEM(STP_D16MTS, (0x9), 1, 4, true, data16_mts_cb), STP_ITEM(STP_D32MTS, (0xa), 1, 8, true, data32_mts_cb), STP_ITEM(STP_D64MTS, (0xb), 1, 16, true, data64_mts_cb), STP_ITEM(STP_D4, (0xc), 1, 1, false, data4_cb), STP_ITEM(STP_D4MTS, (0xd), 1, 1, true, data4_mts_cb), STP_ITEM(STP_FLAG_TS, (0xe), 1, 0, true, flag_ts_cb), STP_ITEM(STP_VERSION, (0xf0, 0x00), 3, 1, false, version_cb), STP_ITEM(STP_NULL_TS, (0xf0, 0x01), 3, 0, true, notsup_cb), STP_ITEM(STP_USER, (0xf0, 0x02), 3, 0, false, notsup_cb), STP_ITEM(STP_USER_TS, (0xf0, 0x03), 3, 0, true, notsup_cb), STP_ITEM(STP_TIME, (0xf0, 0x04), 3, 0, false, notsup_cb), STP_ITEM(STP_TIME_TS, (0xf0, 0x05), 3, 0, true, notsup_cb), STP_ITEM(STP_TRIG, (0xf0, 0x06), 3, 0, false, notsup_cb), STP_ITEM(STP_TRIG_TS, (0xf0, 0x07), 3, 0, true, notsup_cb), STP_ITEM(STP_FREQ, (0xf0, 0x08), 3, 8, false, freq_cb), STP_ITEM(STP_FREQ_TS, (0xf0, 0x09), 3, 8, true, freq_ts_cb), STP_ITEM(STP_XSYNC, (0xf0, 0x0a), 3, 0, false, notsup_cb), STP_ITEM(STP_XSYNC_TS, (0xf0, 0x0b), 3, 0, true, notsup_cb), STP_ITEM(STP_FREQ_40, (0xf0, 0xf0), 4, 10, false, freq_cb), STP_ITEM(STP_FREQ_40_TS, (0xf0, 0xf1), 4, 0, true, notsup_cb), STP_ITEM(STP_DIP, (0xf0, 0xf2), 4, 0, false, notsup_cb), STP_ITEM(STP_M16, (0xf1), 2, 4, false, major_cb), STP_ITEM(STP_GERR, (0xf2), 2, 2, false, gerror_cb), STP_ITEM(STP_C16, (0xf3), 2, 4, false, channel16_cb), STP_ITEM(STP_D8TS, (0xf4), 2, 2, true, data8_ts_cb), STP_ITEM(STP_D16TS, (0xf5), 2, 4, true, data16_ts_cb), STP_ITEM(STP_D32TS, (0xf6), 2, 8, true, data32_ts_cb), STP_ITEM(STP_D64TS, (0xf7), 2, 16, true, data64_ts_cb), STP_ITEM(STP_D8M, (0xf8), 2, 2, false, data8_m_cb), STP_ITEM(STP_D16M, (0xf9), 2, 4, false, data16_m_cb), STP_ITEM(STP_D32M, (0xfa), 2, 8, false, data32_m_cb), STP_ITEM(STP_D64M, (0xfb), 2, 16, false, data64_m_cb), STP_ITEM(STP_D4TS, (0xfc), 2, 1, true, data4_ts_cb), STP_ITEM(STP_D4M, (0xfd), 2, 1, false, data4_m_cb), STP_ITEM(STP_FLAG, (0xfe), 2, 0, false, flag_cb), STP_ITEM(STP_ASYNC, (0xff, 0xff, 0xff), 6, 16, false, async_cb), STP_ITEM(STP_INVALID, (0x0), 0, 0, false, NULL), }; /** @brief Decode a nibble and read opcode from the stream. * * Function reads a nibble and continues or starts decoding of a STP opcode. * * @param data Pointer to the stream. * @param[in,out] noff Offset (in nibbles). * @param nlen Length (in nibbles). * @param[in,out] ncnt Current number of nibbles * @param[in,out] ntotal Number of nibbles in the opcode. * * @retval STP_INVALID Opcode decoding is in progress. * @retval opcode Decoded opcode. */ static inline uint8_t get_nibble(const uint8_t *data, size_t noff) { uint8_t ret = data[noff / 2]; if (noff & 0x1UL) { ret >>= 4; } ret &= 0x0F; return ret; } static inline void get_nibbles64(const uint8_t *src, size_t src_noff, uint8_t *dst, size_t dst_noff, size_t nlen) { bool src_ba = (src_noff & 0x1UL) == 0; bool dst_ba = (dst_noff & 0x1UL) == 0; uint32_t *src32 = (uint32_t *)&src[src_noff / 2]; uint32_t *dst32 = (uint32_t *)&dst[dst_noff / 2]; if (nlen == 16) { /* dst must be aligned. */ if (src_ba) { dst32[0] = src32[0]; dst32[1] = src32[1]; } else { uint64_t src0 = src32[0] | ((uint64_t)src32[1] << 32); uint64_t src1 = src32[2] | ((uint64_t)src32[3] << 32); uint64_t part_a = src0 >> 4; uint64_t part_b = src1 << 60; uint64_t out = part_a | part_b; dst32[0] = (uint32_t)out; dst32[1] = (uint32_t)(out >> 32); } return; } uint64_t src0 = src32[0] | ((uint64_t)src32[1] << 32); uint64_t mask = BIT64_MASK(nlen * 4) << (src_ba ? 0 : 4); uint64_t src_d = src0 & mask; if (((src_noff ^ dst_noff) & 0x1UL) == 0) { /* nothing */ } else if (dst_ba) { src_d >>= 4; } else { src_d <<= 4; } dst32[0] |= (uint32_t)src_d; dst32[1] |= (uint32_t)(src_d >> 32); } /* Function performs getting nibbles in less efficient way but does not use unaligned * access which may not be supported by some platforms. */ static void get_nibbles_unaligned(const uint8_t *src, size_t src_noff, uint8_t *dst, size_t dst_noff, size_t nlen) { for (size_t i = 0; i < nlen; i++) { size_t idx = (src_noff + i) / 2; size_t ni = (src_noff + i) & 0x1; uint8_t n = src[idx] >> (ni ? 4 : 0); size_t d_idx = (dst_noff + i) / 2; size_t dni = (dst_noff + i) & 0x1; if (dni == 0) { dst[d_idx] = n; } else { dst[d_idx] |= n << 4; } } } static inline void get_nibbles(const uint8_t *src, size_t src_noff, uint8_t *dst, size_t dst_noff, size_t nlen) { if (!UNALIGNED_ACCESS_SUPPORTED) { get_nibbles_unaligned(src, src_noff, dst, dst_noff, nlen); return; } bool src_ba = (src_noff & 0x1UL) == 0; bool dst_ba = (dst_noff & 0x1UL) == 0; uint32_t *src32 = (uint32_t *)&src[src_noff / 2]; uint32_t *dst32 = (uint32_t *)&dst[dst_noff / 2]; if (nlen > 8) { get_nibbles64(src, src_noff, dst, dst_noff, nlen); return; } else if (nlen == 8) { /* dst must be aligned. */ if (src_ba) { dst32[0] = src32[0]; } else { uint32_t part_a = src32[0] >> 4; uint32_t part_b = src32[1] << 28; dst32[0] = part_a | part_b; } return; } uint32_t mask = BIT_MASK(nlen * 4) << (src_ba ? 0 : 4); uint32_t src_d = src32[0] & mask; if (((src_noff ^ dst_noff) & 0x1UL) == 0) { dst32[0] |= src_d; } else if (dst_ba) { dst32[0] |= (src_d >> 4); } else { dst32[0] |= (src_d << 4); } } /* Function swaps nibbles in a byte. */ static uint8_t swap8(uint8_t byte) { return (byte << 4) | (byte >> 4); } /* Function swaps nibbles in a 16 bit variable. */ static uint16_t swap16(uint16_t halfword) { halfword = __builtin_bswap16(halfword); uint16_t d1 = (halfword & 0xf0f0) >> 4; uint16_t d2 = (halfword & 0x0f0f) << 4; return d1 | d2; } /* Function swaps nibbles in a 32 bit word. */ static uint32_t swap32(uint32_t word) { word = __builtin_bswap32(word); uint32_t d1 = (word & 0xf0f0f0f0) >> 4; uint32_t d2 = (word & 0x0f0f0f0f) << 4; return d1 | d2; } /* Function swaps nibbles in a 64 bit word. */ static uint64_t swap64(uint64_t dword) { uint32_t l = (uint32_t)dword; uint32_t u = (uint32_t)(dword >> 32); return ((uint64_t)swap32(l) << 32) | (uint64_t)swap32(u); } static void swap_n(uint8_t *data, uint32_t n) { switch (n) { case 2: *data = swap8(*data); break; case 4: *(uint16_t *)data = swap16(*(uint16_t *)data); break; case 8: *(uint32_t *)data = swap32(*(uint32_t *)data); break; case 16: *(uint64_t *)data = swap64(*(uint64_t *)data); break; default: *(uint64_t *)data = swap64(*(uint64_t *)data); *(uint64_t *)data >>= (4 * (16 - n)); break; } } static enum stp_id get_op(const uint8_t *data, size_t *noff, size_t *nlen, size_t *ncnt, size_t *ntotal) { uint8_t op = 0; op = get_nibble(data, *noff); *noff += 1; *ncnt += 1; if (*ntotal == 0 && *ncnt == 1) { /* Starting to read op. */ /* op code has only 1 nibble. */ if (op != 0xF) { return (enum stp_id)op; } } else if (*ncnt == 2) { if (op == 0xF) { /* ASYNC*/ *ntotal = 6; } else if (op != 0) { return (enum stp_id)(STP_TAG_2NIBBLE_OP - 1 + op); } } else if (*ncnt == 3) { if (op != 0xf) { return (enum stp_id)(STP_TAG_3NIBBLE_OP + op); } else if (*ntotal == 0) { *ntotal = 4; } } else if (*ncnt == *ntotal) { if (*ntotal == 4) { return (enum stp_id)(STP_TAG_4NIBBLE_OP + op); } else { return STP_ASYNC; } } return STP_INVALID; } void mipi_stp_decoder_sync_loss(void) { state = STP_STATE_OUT_OF_SYNC; ncnt = 0; ntotal = 0; } int mipi_stp_decoder_decode(const uint8_t *data, size_t len) { static enum stp_id curr_id = STP_INVALID; static uint8_t data_buf[8] __aligned(sizeof(uint64_t)); static uint8_t ts_buf[8] __aligned(sizeof(uint64_t)); uint64_t *data64 = (uint64_t *)data_buf; uint64_t *ts64 = (uint64_t *)ts_buf; size_t nlen = 2 * len; do { switch (state) { case STP_STATE_OUT_OF_SYNC: { uint8_t b = get_nibble(data, noff); noff++; if (ncnt < 21 && b == 0xF) { ncnt++; } else if (ncnt == 21 && b == 0) { curr_id = STP_INVALID; ncnt = 0; items[STP_ASYNC].cb(0, 0); state = STP_STATE_OP; } else { ncnt = 0; } break; } case STP_STATE_OP: { curr_id = get_op(data, &noff, &nlen, &ncnt, &ntotal); if (curr_id != STP_INVALID) { ntotal = items[curr_id].d_ncnt; ncnt = 0; if (ntotal > 0) { state = STP_STATE_DATA; data64[0] = 0; } else if (items[curr_id].has_ts) { state = STP_STATE_TS; } else { /* item without data and ts, notify. */ items[curr_id].cb(0, 0); curr_id = STP_INVALID; } } break; } case STP_STATE_DATA: { size_t ncpy = MIN(ntotal - ncnt, nlen - noff); get_nibbles(data, noff, data_buf, ncnt, ncpy); ncnt += ncpy; noff += ncpy; if (ncnt == ntotal) { swap_n(data_buf, ntotal); ncnt = 0; if (items[curr_id].has_ts) { ncnt = 0; ntotal = 0; state = STP_STATE_TS; } else { items[curr_id].cb(*data64, 0); curr_id = STP_INVALID; state = STP_STATE_OP; ntotal = 0; ncnt = 0; } } break; } case STP_STATE_TS: if (ntotal == 0 && ncnt == 0) { /* TS to be read but length is unknown yet */ *ts64 = 0; ntotal = get_nibble(data, noff); noff++; /* Values up to 12 represents number of nibbles on which * timestamp is encoded. Above are the exceptions: * - 13 => 14 nibbles * - 14 => 16 nibbles */ if (ntotal > 12) { if (ntotal == 13) { ntotal = 14; base_ts = ~BIT64_MASK(4 * ntotal) & prev_ts; } else { ntotal = 16; base_ts = 0; } } else { base_ts = ~BIT64_MASK(4 * ntotal) & prev_ts; } } else { size_t ncpy = MIN(ntotal - ncnt, nlen - noff); get_nibbles(data, noff, ts_buf, ncnt, ncpy); ncnt += ncpy; noff += ncpy; if (ncnt == ntotal) { swap_n(ts_buf, ntotal); prev_ts = base_ts | *ts64; items[curr_id].cb(*data64, prev_ts); curr_id = STP_INVALID; state = STP_STATE_OP; ntotal = 0; ncnt = 0; } } break; default: break; } } while (noff < nlen); noff = 0; return 0; } int mipi_stp_decoder_init(const struct mipi_stp_decoder_config *config) { state = config->start_out_of_sync ? STP_STATE_OUT_OF_SYNC : STP_STATE_OP; ntotal = 0; ncnt = 0; cfg = *config; prev_ts = 0; base_ts = 0; noff = 0; return 0; }