/* * Copyright (c) 2018 omSquare s.r.o. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief Atmel SAM0 series RTC-based system timer * * This system timer implementation supports both tickless and ticking modes. * In tickless mode, RTC counts continually in 32-bit mode and timeouts are * scheduled using the RTC comparator. In ticking mode, RTC is configured to * generate an interrupt every tick. */ #include #include #include #include /* RTC registers. */ #define RTC0 ((RtcMode0 *) DT_INST_0_ATMEL_SAM0_RTC_BASE_ADDRESS) /* Number of sys timer cycles per on tick. */ #define CYCLES_PER_TICK (SOC_ATMEL_SAM0_GCLK0_FREQ_HZ \ / CONFIG_SYS_CLOCK_TICKS_PER_SEC) /* Maximum number of ticks. */ #define MAX_TICKS (UINT32_MAX / CYCLES_PER_TICK - 2) #ifdef CONFIG_TICKLESS_KERNEL /* * Due to the nature of clock synchronization, reading from or writing to some * RTC registers takes approximately six RTC_GCLK cycles. This constant defines * a safe threshold for the comparator. */ #define TICK_THRESHOLD 7 BUILD_ASSERT_MSG(CYCLES_PER_TICK > TICK_THRESHOLD, "CYCLES_PER_TICK must be greater than TICK_THRESHOLD for " "tickless mode"); #else /* !CONFIG_TICKLESS_KERNEL */ /* * For some reason, RTC does not generate interrupts when COMP == 0, * MATCHCLR == 1 and PRESCALER == 0. So we need to check that CYCLES_PER_TICK * is more than one. */ BUILD_ASSERT_MSG(CYCLES_PER_TICK > 1, "CYCLES_PER_TICK must be greater than 1 for ticking mode"); #endif /* CONFIG_TICKLESS_KERNEL */ /* Helper macro to get the correct GCLK GEN based on configuration. */ #define GCLK_GEN(n) GCLK_EVAL(n) #define GCLK_EVAL(n) GCLK_CLKCTRL_GEN_GCLK##n /* Tick/cycle count of the last announce call. */ static volatile u32_t rtc_last; #ifndef CONFIG_TICKLESS_KERNEL /* Current tick count. */ static volatile u32_t rtc_counter; /* Tick value of the next timeout. */ static volatile u32_t rtc_timeout; #endif /* CONFIG_TICKLESS_KERNEL */ /* * Waits for RTC bus synchronization. */ static inline void rtc_sync(void) { while (RTC0->STATUS.reg & RTC_STATUS_SYNCBUSY) { /* Wait for bus synchronization... */ } } /* * Reads RTC COUNT register. First a read request must be written to READREQ, * then - when bus synchronization completes - the COUNT register is read and * returned. */ static u32_t rtc_count(void) { RTC0->READREQ.reg = RTC_READREQ_RREQ; rtc_sync(); return RTC0->COUNT.reg; } static void rtc_reset(void) { rtc_sync(); /* Disable interrupt. */ RTC0->INTENCLR.reg = RTC_MODE0_INTENCLR_MASK; /* Clear interrupt flag. */ RTC0->INTFLAG.reg = RTC_MODE0_INTFLAG_MASK; /* Disable RTC module. */ RTC0->CTRL.reg &= ~RTC_MODE0_CTRL_ENABLE; rtc_sync(); /* Initiate software reset. */ RTC0->CTRL.reg |= RTC_MODE0_CTRL_SWRST; } static void rtc_isr(void *arg) { ARG_UNUSED(arg); /* Read and clear the interrupt flag register. */ u16_t status = RTC0->INTFLAG.reg; RTC0->INTFLAG.reg = status; #ifdef CONFIG_TICKLESS_KERNEL /* Read the current counter and announce the elapsed time in ticks. */ u32_t count = rtc_count(); if (count != rtc_last) { u32_t ticks = (count - rtc_last) / CYCLES_PER_TICK; z_clock_announce(ticks); rtc_last += ticks * CYCLES_PER_TICK; } #else /* !CONFIG_TICKLESS_KERNEL */ if (status) { /* RTC just ticked one more tick... */ if (++rtc_counter == rtc_timeout) { z_clock_announce(rtc_counter - rtc_last); rtc_last = rtc_counter; } } else { /* ISR was invoked directly from z_clock_set_timeout. */ z_clock_announce(0); } #endif /* CONFIG_TICKLESS_KERNEL */ } int z_clock_driver_init(struct device *device) { ARG_UNUSED(device); /* Set up bus clock and GCLK generator. */ PM->APBAMASK.reg |= PM_APBAMASK_RTC; GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID(RTC_GCLK_ID) | GCLK_CLKCTRL_CLKEN | GCLK_GEN(DT_INST_0_ATMEL_SAM0_RTC_CLOCK_GENERATOR); while (GCLK->STATUS.bit.SYNCBUSY) { /* Synchronize GCLK. */ } /* Reset module to hardware defaults. */ rtc_reset(); rtc_last = 0U; /* Configure RTC with 32-bit mode, configured prescaler and MATCHCLR. */ u16_t ctrl = RTC_MODE0_CTRL_MODE(0) | RTC_MODE0_CTRL_PRESCALER(0); #ifndef CONFIG_TICKLESS_KERNEL ctrl |= RTC_MODE0_CTRL_MATCHCLR; #endif rtc_sync(); RTC0->CTRL.reg = ctrl; #ifdef CONFIG_TICKLESS_KERNEL /* Tickless kernel lets RTC count continually and ignores overflows. */ RTC0->INTENSET.reg = RTC_MODE0_INTENSET_CMP0; #else /* Non-tickless mode uses comparator together with MATCHCLR. */ rtc_sync(); RTC0->COMP[0].reg = CYCLES_PER_TICK; RTC0->INTENSET.reg = RTC_MODE0_INTENSET_OVF; rtc_counter = 0U; rtc_timeout = 0U; #endif /* Enable RTC module. */ rtc_sync(); RTC0->CTRL.reg |= RTC_MODE0_CTRL_ENABLE; /* Enable RTC interrupt. */ NVIC_ClearPendingIRQ(DT_INST_0_ATMEL_SAM0_RTC_IRQ_0); IRQ_CONNECT(DT_INST_0_ATMEL_SAM0_RTC_IRQ_0, DT_INST_0_ATMEL_SAM0_RTC_IRQ_0_PRIORITY, rtc_isr, 0, 0); irq_enable(DT_INST_0_ATMEL_SAM0_RTC_IRQ_0); return 0; } void z_clock_set_timeout(s32_t ticks, bool idle) { ARG_UNUSED(idle); #ifdef CONFIG_TICKLESS_KERNEL ticks = (ticks == K_FOREVER) ? MAX_TICKS : ticks; ticks = MAX(MIN(ticks - 1, (s32_t) MAX_TICKS), 0); /* Compute number of RTC cycles until the next timeout. */ u32_t count = rtc_count(); u32_t timeout = ticks * CYCLES_PER_TICK + count % CYCLES_PER_TICK; /* Round to the nearest tick boundary. */ timeout = (timeout + CYCLES_PER_TICK - 1) / CYCLES_PER_TICK * CYCLES_PER_TICK; if (timeout < TICK_THRESHOLD) { timeout += CYCLES_PER_TICK; } rtc_sync(); RTC0->COMP[0].reg = count + timeout; #else /* !CONFIG_TICKLESS_KERNEL */ if (ticks == K_FOREVER) { /* Disable comparator for K_FOREVER and other negative * values. */ rtc_timeout = rtc_counter; return; } if (ticks < 1) { ticks = 1; } /* Avoid race condition between reading counter and ISR incrementing * it. */ int key = irq_lock(); rtc_timeout = rtc_counter + ticks; irq_unlock(key); #endif /* CONFIG_TICKLESS_KERNEL */ } u32_t z_clock_elapsed(void) { #ifdef CONFIG_TICKLESS_KERNEL return (rtc_count() - rtc_last) / CYCLES_PER_TICK; #else return rtc_counter - rtc_last; #endif } u32_t z_timer_cycle_get_32(void) { /* Just return the absolute value of RTC cycle counter. */ return rtc_count(); }