#!/usr/bin/env python3 # # Copyright (c) 2017 Intel Corporation # # SPDX-License-Identifier: Apache-2.0 import sys import argparse import pprint import os import struct from distutils.version import LooseVersion import elftools from elftools.elf.elffile import ELFFile from elftools.dwarf import descriptions from elftools.elf.sections import SymbolTableSection if LooseVersion(elftools.__version__) < LooseVersion('0.24'): sys.stderr.write("pyelftools is out of date, need version 0.24 or later\n") sys.exit(1) kobjects = [ "k_alert", "k_msgq", "k_mutex", "k_pipe", "k_sem", "k_stack", "k_thread", "k_timer", "_k_thread_stack_element", "device" ] subsystems = [ "adc_driver_api", "aio_cmp_driver_api", "counter_driver_api", "crypto_driver_api", "flash_driver_api", "gpio_driver_api", "i2c_driver_api", "i2s_driver_api", "ipm_driver_api", "pinmux_driver_api", "pwm_driver_api", "entropy_driver_api", "rtc_driver_api", "sensor_driver_api", "spi_driver_api", "uart_driver_api", ] def subsystem_to_enum(subsys): return "K_OBJ_DRIVER_" + subsys[:-11].upper() def kobject_to_enum(ko): return "K_OBJ_" + ko[2:].upper() DW_OP_addr = 0x3 DW_OP_fbreg = 0x91 STACK_TYPE = "_k_thread_stack_element" thread_counter = 0 # Global type environment. Populated by pass 1. type_env = {} # --- debug stuff --- scr = os.path.basename(sys.argv[0]) def debug(text): if not args.verbose: return sys.stdout.write(scr + ": " + text + "\n") def error(text): sys.stderr.write("%s ERROR: %s\n" % (scr, text)) sys.exit(1) def debug_die(die, text): fn, ln = get_filename_lineno(die) debug(str(die)) debug("File '%s', line %d:" % (fn, ln)) debug(" %s" % text) # --- type classes ---- class KobjectInstance: def __init__(self, type_obj, addr): global thread_counter self.addr = addr self.type_obj = type_obj # Type name determined later since drivers needs to look at the # API struct address self.type_name = None if self.type_obj.name == "k_thread": # Assign an ID for this thread object, used to track its # permissions to other kernel objects self.data = thread_counter thread_counter = thread_counter + 1 else: self.data = 0 class KobjectType: def __init__(self, offset, name, size, api=False): self.name = name self.size = size self.offset = offset self.api = api def __repr__(self): return "" % self.name def has_kobject(self): return True def get_kobjects(self, addr): return {addr: KobjectInstance(self, addr)} class ArrayType: def __init__(self, offset, elements, member_type): self.elements = elements self.member_type = member_type self.offset = offset def __repr__(self): return "" % (self.member_type, self.num_members) def has_kobject(self): if self.member_type not in type_env: return False return type_env[self.member_type].has_kobject() def get_kobjects(self, addr): mt = type_env[self.member_type] # Stacks are arrays of _k_stack_element_t but we want to treat # the whole array as one kernel object (a thread stack) # Data value gets set to size of entire region if isinstance(mt, KobjectType) and mt.name == STACK_TYPE: # An array of stacks appears as a multi-dimensional array. # The last size is the size of each stack. We need to track # each stack within the array, not as one huge stack object. *dimensions, stacksize = self.elements num_members = 1 for e in dimensions: num_members = num_members * e ret = {} for i in range(num_members): a = addr + (i * stacksize) o = mt.get_kobjects(a) o[a].data = stacksize ret.update(o) return ret objs = {} # Multidimensional array flattened out num_members = 1 for e in self.elements: num_members = num_members * e for i in range(num_members): objs.update(mt.get_kobjects(addr + (i * mt.size))) return objs class AggregateTypeMember: def __init__(self, offset, member_name, member_type, member_offset): self.member_name = member_name self.member_type = member_type self.member_offset = member_offset def __repr__(self): return "" % (self.member_name, self.member_type, self.member_offset) def has_kobject(self): if self.member_type not in type_env: return False return type_env[self.member_type].has_kobject() def get_kobjects(self, addr): mt = type_env[self.member_type] return mt.get_kobjects(addr + self.member_offset) class ConstType: def __init__(self, child_type): self.child_type = child_type def __repr__(self): return "" % self.child_type def has_kobject(self): if self.child_type not in type_env: return False return type_env[self.child_type].has_kobject() def get_kobjects(self, addr): return type_env[self.child_type].get_kobjects(addr) class AggregateType: def __init__(self, offset, name, size): self.name = name self.size = size self.offset = offset self.members = [] def add_member(self, member): self.members.append(member) def __repr__(self): return "" % (self.name, self.members) def has_kobject(self): result = False bad_members = [] for member in self.members: if member.has_kobject(): result = True else: bad_members.append(member) # Don't need to consider this again, just remove it for bad_member in bad_members: self.members.remove(bad_member) return result def get_kobjects(self, addr): objs = {} for member in self.members: objs.update(member.get_kobjects(addr)) return objs # --- helper functions for getting data from DIEs --- def die_get_name(die): if not 'DW_AT_name' in die.attributes: return None return die.attributes["DW_AT_name"].value.decode("utf-8") def die_get_type_offset(die): if not 'DW_AT_type' in die.attributes: return 0 return die.attributes["DW_AT_type"].value + die.cu.cu_offset def die_get_byte_size(die): if not 'DW_AT_byte_size' in die.attributes: return 0 return die.attributes["DW_AT_byte_size"].value def analyze_die_struct(die): name = die_get_name(die) or "" offset = die.offset size = die_get_byte_size(die) # Incomplete type if not size: return if name in kobjects: type_env[offset] = KobjectType(offset, name, size) elif name in subsystems: type_env[offset] = KobjectType(offset, name, size, api=True) else: at = AggregateType(offset, name, size) type_env[offset] = at for child in die.iter_children(): if child.tag != "DW_TAG_member": continue child_type = die_get_type_offset(child) member_offset = child.attributes["DW_AT_data_member_location"].value cname = die_get_name(child) or "" m = AggregateTypeMember(child.offset, cname, child_type, member_offset) at.add_member(m) return def analyze_die_const(die): type_offset = die_get_type_offset(die) if not type_offset: return type_env[die.offset] = ConstType(type_offset) def analyze_die_array(die): type_offset = die_get_type_offset(die) elements = [] for child in die.iter_children(): if child.tag != "DW_TAG_subrange_type": continue if "DW_AT_upper_bound" not in child.attributes: continue ub = child.attributes["DW_AT_upper_bound"] if not ub.form.startswith("DW_FORM_data"): continue elements.append(ub.value + 1) if not elements: return type_env[die.offset] = ArrayType(die.offset, elements, type_offset) def addr_deref(elf, addr): for section in elf.iter_sections(): start = section['sh_addr'] end = start + section['sh_size'] if addr >= start and addr < end: data = section.data() offset = addr - start return struct.unpack("I", data[offset:offset+4])[0] return 0 def device_get_api_addr(elf, addr): return addr_deref(elf, addr + 4) def get_filename_lineno(die): lp_header = die.dwarfinfo.line_program_for_CU(die.cu).header files = lp_header["file_entry"] includes = lp_header["include_directory"] fileinfo = files[die.attributes["DW_AT_decl_file"].value - 1] filename = fileinfo.name.decode("utf-8") filedir = includes[fileinfo.dir_index - 1].decode("utf-8") path = os.path.join(filedir, filename) lineno = die.attributes["DW_AT_decl_line"].value return (path, lineno) def find_kobjects(elf, syms): if not elf.has_dwarf_info(): sys.stderr.write("ELF file has no DWARF information\n"); sys.exit(1) kram_start = syms["__kernel_ram_start"] kram_end = syms["__kernel_ram_end"] krom_start = syms["_image_rom_start"] krom_end = syms["_image_rom_end"] di = elf.get_dwarf_info() variables = [] # Step 1: collect all type information. for CU in di.iter_CUs(): CU_path = CU.get_top_DIE().get_full_path() lp = di.line_program_for_CU(CU) for idx, die in enumerate(CU.iter_DIEs()): # Unions are disregarded, kernel objects should never be union # members since the memory is not dedicated to that object and # could be something else if die.tag == "DW_TAG_structure_type": analyze_die_struct(die) elif die.tag == "DW_TAG_const_type": analyze_die_const(die) elif die.tag == "DW_TAG_array_type": analyze_die_array(die) elif die.tag == "DW_TAG_variable": variables.append(die) # Step 2: filter type_env to only contain kernel objects, or structs and # arrays of kernel objects bad_offsets = [] for offset, type_object in type_env.items(): if not type_object.has_kobject(): bad_offsets.append(offset) for offset in bad_offsets: del type_env[offset] # Step 3: Now that we know all the types we are looking for, examine # all variables all_objs = {} # Gross hack, see below work_q_found = False for die in variables: name = die_get_name(die) if not name: continue type_offset = die_get_type_offset(die) # Is this a kernel object, or a structure containing kernel objects? if type_offset not in type_env: continue if "DW_AT_declaration" in die.attributes: # FIXME: why does k_sys_work_q not resolve an address in the DWARF # data??? Every single instance it finds is an extern definition # but not the actual instance in system_work_q.c # Is there something weird about how lib-y stuff is linked? if name == "k_sys_work_q" and not work_q_found and name in syms: addr = syms[name] work_q_found = True else: continue else: if "DW_AT_location" not in die.attributes: debug_die(die, "No location information for object '%s'; possibly stack allocated" % name) continue loc = die.attributes["DW_AT_location"] if loc.form != "DW_FORM_exprloc": debug_die(die, "kernel object '%s' unexpected location format" % name) continue opcode = loc.value[0] if opcode != DW_OP_addr: # Check if frame pointer offset DW_OP_fbreg if opcode == DW_OP_fbreg: debug_die(die, "kernel object '%s' found on stack" % name) else: debug_die(die, "kernel object '%s' unexpected exprloc opcode %s" % (name, hex(opcode))) continue addr = (loc.value[1] | (loc.value[2] << 8) | (loc.value[3] << 16) | (loc.value[4] << 24)) if addr == 0: # Never linked; gc-sections deleted it continue if ((addr < kram_start or addr >= kram_end) and (addr < krom_start or addr >= krom_end)): debug_die(die, "object '%s' found in invalid location %s" % (name, hex(addr))); continue type_obj = type_env[type_offset] objs = type_obj.get_kobjects(addr) all_objs.update(objs) debug("symbol '%s' at %s contains %d object(s)" % (name, hex(addr), len(objs))) # Step 4: objs is a dictionary mapping variable memory addresses to their # associated type objects. Now that we have seen all variables and can # properly look up API structs, convert this into a dictionary mapping # variables to the C enumeration of what kernel object type it is. ret = {} for addr, ko in all_objs.items(): # API structs don't get into the gperf table if ko.type_obj.api: continue if ko.type_obj.name != "device": # Not a device struct so we immediately know its type ko.type_name = kobject_to_enum(ko.type_obj.name) ret[addr] = ko continue # Device struct. Need to get the address of its API struct, if it has # one. apiaddr = device_get_api_addr(elf, addr) if apiaddr not in all_objs: # API struct does not correspond to a known subsystem, skip it continue apiobj = all_objs[apiaddr] ko.type_name = subsystem_to_enum(apiobj.type_obj.name) ret[addr] = ko debug("found %d kernel object instances total" % len(ret)) return ret header = """%compare-lengths %define lookup-function-name _k_object_lookup %language=ANSI-C %global-table %struct-type %{ #include #include #include %} struct _k_object; %% """ # Different versions of gperf have different prototypes for the lookup function, # best to implement the wrapper here. The pointer value itself is turned into # a string, we told gperf to expect binary strings that are not NULL-terminated. footer = """%% struct _k_object *_k_object_find(void *obj) { return _k_object_lookup((const char *)obj, sizeof(void *)); } void _k_object_wordlist_foreach(_wordlist_cb_func_t func, void *context) { int i; for (i = MIN_HASH_VALUE; i <= MAX_HASH_VALUE; i++) { if (wordlist[i].name) { func(&wordlist[i], context); } } } """ def write_gperf_table(fp, objs, static_begin, static_end): fp.write(header) for obj_addr, ko in objs.items(): obj_type = ko.type_name # pre-initialized objects fall within this memory range, they are # either completely initialized at build time, or done automatically # at boot during some PRE_KERNEL_* phase initialized = obj_addr >= static_begin and obj_addr < static_end byte_str = struct.pack("I", obj_addr) fp.write("\"") for byte in byte_str: val = "\\x%02x" % byte fp.write(val) fp.write("\",{},%s,%s,%d\n" % (obj_type, "K_OBJ_FLAG_INITIALIZED" if initialized else "0", ko.data)) fp.write(footer) def get_symbols(obj): for section in obj.iter_sections(): if isinstance(section, SymbolTableSection): return {sym.name: sym.entry.st_value for sym in section.iter_symbols()} raise LookupError("Could not find symbol table") def parse_args(): global args parser = argparse.ArgumentParser(description = __doc__, formatter_class = argparse.RawDescriptionHelpFormatter) parser.add_argument("-k", "--kernel", required=True, help="Input zephyr ELF binary") parser.add_argument("-o", "--output", required=True, help="Output list of kernel object addresses for gperf use") parser.add_argument("-v", "--verbose", action="store_true", help="Print extra debugging information") args = parser.parse_args() def main(): parse_args() with open(args.kernel, "rb") as fp: elf = ELFFile(fp) args.little_endian = elf.little_endian syms = get_symbols(elf) max_threads = syms["CONFIG_MAX_THREAD_BYTES"] * 8 objs = find_kobjects(elf, syms) if thread_counter > max_threads: sys.stderr.write("Too many thread objects (%d)\n" % thread_counter) sys.stderr.write("Increase CONFIG_MAX_THREAD_BYTES to %d\n", -(-thread_counter // 8)); sys.exit(1) with open(args.output, "w") as fp: write_gperf_table(fp, objs, syms["_static_kernel_objects_begin"], syms["_static_kernel_objects_end"]) if __name__ == "__main__": main()