We aren't going to allow any user mode access to the
k_mem_slab APIs, but in some cases (specifically in the
case of the I2S subsystem) we need to allow user mode
to assign a memory slab to a particular driver.
This will let us verfiy (in supervisor mode) that a provided
k_mem_slab pointer is really a k_mem_slab, and know its
initialization state, and have permissions assigned to it.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Rescheduling was called unconditionally at the end of k_mem_slab_free
call. It is necessary only when thread is pending in the wait queue.
Signed-off-by: Krzysztof Chruscinski <krzysztof.chruscinski@nordicsemi.no>
There were multiple spots where code was using the _wait_q_t
abstraction as a synonym for a dlist and doing direct list management
on them with the dlist APIs. Refactor _wait_q_t into a proper opaque
struct (not a typedef for sys_dlist_t) and write a simple wrapper API
for the existing usages. Now replacement of wait_q with a different
data structure is much cleaner.
Note that there were some SYS_DLIST_FOR_EACH_SAFE loops in mailbox.c
that got replaced by the normal/non-safe macro. While these loops do
mutate the list in the code body, they always do an early return in
those circumstances instead of returning into the macro'd for() loop,
so the _SAFE usage was needless.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Almost everywhere this was called, it was immediately followed by
_abort_thread_timeout(), for obvious reasons. The only exceptions
were in timeout and k_timer expiration (unifying these two would be
another good cleanup), which are peripheral parts of the scheduler and
can plausibly use a more "internal" API.
So make the common case the default, and expose the old behavior as
_unpend_thread_no_timeout(). (Along with identical changes for
_unpend_first_thread) Saves code bytes and simplifies scheduler
surface area for future synchronization work.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Now that other work has eliminated the two cases where we had to do a
reschedule "but yield even if we are cooperative", we can squash both
down to a single _reschedule() function which does almost exactly what
legacy _Swap() did, but wrapped as a proper scheduler API.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Recent changes have eliminated most use of _Swap() in favor of higher
level scheduler abstractions. We can remove the header too.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Everywhere the current thread is pended, the code is going to have to
do a _Swap() soon afterward, yet the scheduler API exposed these as
separate steps. Unify this pattern everywhere it appears, which saves
some code bytes and gets _Swap() out of the general scheduler API at
zero cost.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
There was a somewhat promiscuous pattern in the kernel where IPC
mechanisms would do something that might effect the current thread
choice, then check _must_switch_threads() (or occasionally
__must_switch_threads -- don't ask, the distinction is being replaced
by real English words), sometimes _is_in_isr() (but not always, even
in contexts where that looks like it would be a mistake), and then
call _Swap() if everything is OK, otherwise releasing the irq_lock().
Sometimes this was done directly, sometimes via the inverted test,
sometimes (poll, heh) by doing the test when the thread state was
modified and then needlessly passing the result up the call stack to
the point of the _Swap().
And some places were just calling _reschedule_threads(), which did all
this already.
Unify all this madness. The old _reschedule_threads() function has
split into two variants: _reschedule_yield() and
_reschedule_noyield(). The latter is the "normal" one that respects
the cooperative priority of the current thread (i.e. it won't switch
out even if there is a higher priority thread ready -- the current
thread has to pend itself first), the former is used in the handful of
places where code was doing a swap unconditionally, just to preserve
precise behavior across the refactor. I'm not at all convinced it
should exist...
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
The xtensa-asm2 work included a patch that added nano_internal.h
includes in lots of places that needed to have _Swap defined, because
it had to break a cycle and this no longer got pulled in from the arch
headers.
Unfortunately those new includes created new and more amusing cycles
elsewhere which led to breakage on other platforms.
Break out the _Swap definition (only) into a separate header and use
that instead. Cleaner. Seems not to have any more hidden gotchas.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
_Swap() is defined in nano_internal.h. Everything calls _Swap().
Pretty much nothing that called _Swap() included nano_internal.h,
expecting it to be picked up automatically through other headers (as
it happened, from the kernel arch-specific include file). A new
_Swap() is going to need some other symbols in the inline definition,
so I needed to break that cycle. Now nothing sees _Swap() defined
anymore. Put nano_internal.h everywhere it's needed.
Our kernel includes remain a big awful yucky mess. This makes things
more correct but no less ugly. Needs cleanup.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
All system calls made from userspace which involve pointers to kernel
objects (including device drivers) will need to have those pointers
validated; userspace should never be able to crash the kernel by passing
it garbage.
The actual validation with _k_object_validate() will be in the system
call receiver code, which doesn't exist yet.
- CONFIG_USERSPACE introduced. We are somewhat far away from having an
end-to-end implementation, but at least need a Kconfig symbol to
guard the incoming code with. Formal documentation doesn't exist yet
either, but will appear later down the road once the implementation is
mostly finalized.
- In the memory region for RAM, the data section has been moved last,
past bss and noinit. This ensures that inserting generated tables
with addresses of kernel objects does not change the addresses of
those objects (which would make the table invalid)
- The DWARF debug information in the generated ELF binary is parsed to
fetch the locations of all kernel objects and pass this to gperf to
create a perfect hash table of their memory addresses.
- The generated gperf code doesn't know that we are exclusively working
with memory addresses and uses memory inefficently. A post-processing
script process_gperf.py adjusts the generated code before it is
compiled to work with pointer values directly and not strings
containing them.
- _k_object_init() calls inserted into the init functions for the set of
kernel object types we are going to support so far
Issue: ZEP-2187
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Fixes sparse warnings:
<snip>/zephyr/kernel/timer.c:15:16: warning: symbol '_trace_list_k_timer' was not declared. Should it be static?
<snip>/zephyr/kernel/sem.c:32:14: warning: symbol'_trace_list_k_sem' was not declared. Should it be static?
<snip>/zephyr/kernel/stack.c:24:16: warning: symbol '_trace_list_k_stack' was not declared. Should it be static?
<snip>/zephyr/kernel/queue.c:27:16: warning: symbol '_trace_list_k_queue' was not declared. Should it be static?
<snip>/zephyr/kernel/pipes.c:40:15: warning: symbol '_trace_list_k_pipe' was not declared. Should it be static?
<snip>/zephyr/kernel/mutex.c:46:16: warning: symbol '_trace_list_k_mutex' was not declared. Should it be static?
<snip>/zephyr/kernel/msg_q.c:26:15: warning: symbol '_trace_list_k_msgq' was not declared. Should it be static?
<snip>/zephyr/kernel/mem_slab.c:20:19: warning: symbol '_trace_list_k_mem_slab' was not declared. Should it be static?
<snip>/zephyr/kernel/mailbox.c:53:15: warning: symbol '_trace_list_k_mbox' was not declared. Should it be static?
Change-Id: I42d55aea9855b9c1dd560852ca033c9a19f1ac21
Signed-off-by: Maciek Borzecki <maciek.borzecki@gmail.com>
Convert code to use u{8,16,32,64}_t and s{8,16,32,64}_t instead of C99
integer types. This handles the remaining includes and kernel, plus
touching up various points that we skipped because of include
dependancies. We also convert the PRI printf formatters in the arch
code over to normal formatters.
Jira: ZEP-2051
Change-Id: Iecbb12601a3ee4ea936fd7ddea37788a645b08b0
Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
Replace the existing Apache 2.0 boilerplate header with an SPDX tag
throughout the zephyr code tree. This patch was generated via a
script run over the master branch.
Also updated doc/porting/application.rst that had a dependency on
line numbers in a literal include.
Manually updated subsys/logging/sys_log.c that had a malformed
header in the original file. Also cleanup several cases that already
had a SPDX tag and we either got a duplicate or missed updating.
Jira: ZEP-1457
Change-Id: I6131a1d4ee0e58f5b938300c2d2fc77d2e69572c
Signed-off-by: David B. Kinder <david.b.kinder@intel.com>
Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
Also remove mentions of unified kernel in various places in the kernel,
samples and documentation.
Change-Id: Ice43bc73badbe7e14bae40fd6f2a302f6528a77d
Signed-off-by: Anas Nashif <anas.nashif@intel.com>