... because it is (required).
This makes a difference when building with CMake and forgetting
ZEPHYR_BASE or not registering Zephyr in the CMake package registry.
In this particular case, REQUIRED turns this harmless looking log
statement:
-- Could NOT find Zephyr (missing: Zephyr_DIR)
-- The C compiler identification is GNU 9.3.0
-- The CXX compiler identification is GNU 9.3.0
-- Check for working C compiler: /usr/bin/cc
-- ...
-- ...
-- ...
-- Detecting CXX compile features
-- Detecting CXX compile features - done
CMake Error at CMakeLists.txt:8 (target_sources):
Cannot specify sources for target "app" which is not built by
this project.
... into this louder, clearer, faster and (last but not least) final
error:
CMake Error at CMakeLists.txt:5 (find_package):
Could not find a package configuration file provided by "Zephyr" with
any of the following names:
ZephyrConfig.cmake
zephyr-config.cmake
Add the installation prefix of "Zephyr" to CMAKE_PREFIX_PATH or set
"Zephyr_DIR" to a directory containing one of the above files. If
"Zephyr" provides a separate development package or SDK, be sure it
has been installed.
-- Configuring incomplete, errors occurred!
Signed-off-by: Marc Herbert <marc.herbert@intel.com>
Using find_package to locate Zephyr.
Old behavior was to use $ENV{ZEPHYR_BASE} for inclusion of boiler plate
code.
Whenever an automatic run of CMake happend by the build system / IDE
then it was required that ZEPHYR_BASE was defined.
Using ZEPHYR_BASE only to locate the Zephyr package allows CMake to
cache the base variable and thus allowing subsequent invocation even
if ZEPHYR_BASE is not set in the environment.
It also removes the risk of strange build results if a user switchs
between different Zephyr based project folders and forgetting to reset
ZEPHYR_BASE before running ninja / make.
Signed-off-by: Torsten Rasmussen <Torsten.Rasmussen@nordicsemi.no>
Interrupt routing on x86-64 is done entirely at runtime,
we should skip all 64-bit targets not just QEMU.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Remove leading/trailing blank lines in .c, .h, .py, .rst, .yml, and
.yaml files.
Will avoid failures with the new CI test in
https://github.com/zephyrproject-rtos/ci-tools/pull/112, though it only
checks changed files.
Move the 'target-notes' target in boards/xtensa/odroid_go/doc/index.rst
to get rid of the trailing blank line there. It was probably misplaced.
Signed-off-by: Ulf Magnusson <Ulf.Magnusson@nordicsemi.no>
This commit refactors kernel and arch headers to establish a boundary
between private and public interface headers.
The refactoring strategy used in this commit is detailed in the issue
This commit introduces the following major changes:
1. Establish a clear boundary between private and public headers by
removing "kernel/include" and "arch/*/include" from the global
include paths. Ideally, only kernel/ and arch/*/ source files should
reference the headers in these directories. If these headers must be
used by a component, these include paths shall be manually added to
the CMakeLists.txt file of the component. This is intended to
discourage applications from including private kernel and arch
headers either knowingly and unknowingly.
- kernel/include/ (PRIVATE)
This directory contains the private headers that provide private
kernel definitions which should not be visible outside the kernel
and arch source code. All public kernel definitions must be added
to an appropriate header located under include/.
- arch/*/include/ (PRIVATE)
This directory contains the private headers that provide private
architecture-specific definitions which should not be visible
outside the arch and kernel source code. All public architecture-
specific definitions must be added to an appropriate header located
under include/arch/*/.
- include/ AND include/sys/ (PUBLIC)
This directory contains the public headers that provide public
kernel definitions which can be referenced by both kernel and
application code.
- include/arch/*/ (PUBLIC)
This directory contains the public headers that provide public
architecture-specific definitions which can be referenced by both
kernel and application code.
2. Split arch_interface.h into "kernel-to-arch interface" and "public
arch interface" divisions.
- kernel/include/kernel_arch_interface.h
* provides private "kernel-to-arch interface" definition.
* includes arch/*/include/kernel_arch_func.h to ensure that the
interface function implementations are always available.
* includes sys/arch_interface.h so that public arch interface
definitions are automatically included when including this file.
- arch/*/include/kernel_arch_func.h
* provides architecture-specific "kernel-to-arch interface"
implementation.
* only the functions that will be used in kernel and arch source
files are defined here.
- include/sys/arch_interface.h
* provides "public arch interface" definition.
* includes include/arch/arch_inlines.h to ensure that the
architecture-specific public inline interface function
implementations are always available.
- include/arch/arch_inlines.h
* includes architecture-specific arch_inlines.h in
include/arch/*/arch_inline.h.
- include/arch/*/arch_inline.h
* provides architecture-specific "public arch interface" inline
function implementation.
* supersedes include/sys/arch_inline.h.
3. Refactor kernel and the existing architecture implementations.
- Remove circular dependency of kernel and arch headers. The
following general rules should be observed:
* Never include any private headers from public headers
* Never include kernel_internal.h in kernel_arch_data.h
* Always include kernel_arch_data.h from kernel_arch_func.h
* Never include kernel.h from kernel_struct.h either directly or
indirectly. Only add the kernel structures that must be referenced
from public arch headers in this file.
- Relocate syscall_handler.h to include/ so it can be used in the
public code. This is necessary because many user-mode public codes
reference the functions defined in this header.
- Relocate kernel_arch_thread.h to include/arch/*/thread.h. This is
necessary to provide architecture-specific thread definition for
'struct k_thread' in kernel.h.
- Remove any private header dependencies from public headers using
the following methods:
* If dependency is not required, simply omit
* If dependency is required,
- Relocate a portion of the required dependencies from the
private header to an appropriate public header OR
- Relocate the required private header to make it public.
This commit supersedes #20047, addresses #19666, and fixes#3056.
Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
There are two set of code supporting x86_64: x86_64 using x32 ABI,
and x86 long mode, and this consolidates both into one x86_64
architecture and SoC supporting truly 64-bit mode.
() Removes the x86_64:x32 architecture and SoC, and replaces
them with the existing x86 long mode arch and SoC.
() Replace qemu_x86_64 with qemu_x86_long as qemu_x86_64.
() Updates samples and tests to remove reference to
qemu_x86_long.
() Renames CONFIG_X86_LONGMODE to CONFIG_X86_64.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Test case arch.interrupt have same test case name
for different architectures. To get rid of it,
I decided to change test cases names.
Signed-off-by: Maksim Masalski <maksim.masalski@intel.com>
In long mode, x86 does not support static IDTs or OpenOCD,
so disable the tests related to these features.
Signed-off-by: Charles E. Youse <charles.youse@intel.com>
- k_sys_fatal_error_handler() can return on all platforms,
indicating that the faulting thread should be aborted.
- Hang the system for unexpected faults instead of trying
to keep going, we have no idea whether the system is even
runnable.
Prevents infinite crash loops during tests.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This is now called z_arch_esf_t, conforming to our naming
convention.
This needs to remain a typedef due to how our offset generation
header mechanism works.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
* z_NanoFatalErrorHandler() is now moved to common kernel code
and renamed z_fatal_error(). Arches dump arch-specific info
before calling.
* z_SysFatalErrorHandler() is now moved to common kernel code
and renamed k_sys_fatal_error_handler(). It is now much simpler;
the default policy is simply to lock interrupts and halt the system.
If an implementation of this function returns, then the currently
running thread is aborted.
* New arch-specific APIs introduced:
- z_arch_system_halt() simply powers off or halts the system.
* We now have a standard set of fatal exception reason codes,
namespaced under K_ERR_*
* CONFIG_SIMPLE_FATAL_ERROR_HANDLER deleted
* LOG_PANIC() calls moved to k_sys_fatal_error_handler()
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>