INLINE is a very common macro, just like MAX or MIN.
Defining it always can easily collide with libraries or
application headers.
And option would be to add a ifdef guard around it,
But it was used in only 1 place in Zephyr, instead
of keeping it just for that, remove it.
Signed-off-by: Alberto Escolar Piedras <alpi@oticon.com>
This adds the calls to read_timer_{start,end}_of_tick_handler()
to mark the start and end of ISR which will be used to display
the time spent in ISR with benchmarking tests.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Add a k_timeout_t type, and use it everywhere that kernel API
functions were accepting a millisecond timeout argument. Instead of
forcing milliseconds everywhere (which are often not integrally
representable as system ticks), do the conversion to ticks at the
point where the timeout is created. This avoids an extra unit
conversion in some application code, and allows us to express the
timeout in units other than milliseconds to achieve greater precision.
The existing K_MSEC() et. al. macros now return initializers for a
k_timeout_t.
The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t
values, which means they cannot be operated on as integers.
Applications which have their own APIs that need to inspect these
vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to
test for equality.
Timer drivers, which receive an integer tick count in ther
z_clock_set_timeout() functions, now use the integer-valued
K_TICKS_FOREVER constant instead of K_FOREVER.
For the initial release, to preserve source compatibility, a
CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the
k_timeout_t will remain a compatible 32 bit value that will work with
any legacy Zephyr application.
Some subsystems present timeout (or timeout-like) values to their own
users as APIs that would re-use the kernel's own constants and
conventions. These will require some minor design work to adapt to
the new scheme (in most cases just using k_timeout_t directly in their
own API), and they have not been changed in this patch, instead
selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems
include: CAN Bus, the Microbit display driver, I2S, LoRa modem
drivers, the UART Async API, Video hardware drivers, the console
subsystem, and the network buffer abstraction.
k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant
provided that works identically to the original API.
Most of the changes here are just type/configuration management and
documentation, but there are logic changes in mempool, where a loop
that used a timeout numerically has been reworked using a new
z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was
enabled) a similar loop was needlessly used to try to retry the
k_poll() call after a spurious failure. But k_poll() does not fail
spuriously, so the loop was removed.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Replace all occurences of BUILD_ASSERT_MSG() with BUILD_ASSERT()
as a result of merging BUILD_ASSERT() and BUILD_ASSERT_MSG().
Signed-off-by: Oleg Zhurakivskyy <oleg.zhurakivskyy@intel.com>
Convert older DT_INST_ macro use in microchip drivers to the new
include/devicetree.h DT_INST macro APIs.
Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
This reverts commit 8739517107.
Pull Request #23437 was merged by mistake with an invalid manifest.
Signed-off-by: Carles Cufi <carles.cufi@nordicsemi.no>
Replace all occurences of BUILD_ASSERT_MSG() with BUILD_ASSERT()
as a result of merging BUILD_ASSERT() and BUILD_ASSERT_MSG().
Signed-off-by: Oleg Zhurakivskyy <oleg.zhurakivskyy@intel.com>
Use DT_INST_* instead of the hard-coded macro from the HAL,
as DT_INST_* are preferred.
Fixes#17775
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Promote the private z_arch_* namespace, which specifies
the interface between the core kernel and the
architecture code, to a new top-level namespace named
arch_*.
This allows our documentation generation to create
online documentation for this set of interfaces,
and this set of interfaces is worth treating in a
more formal way anyway.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
MEC1501 RTOS timer internal counter is on the 32KHz clock domain.
The register interface is on the AHB clock. When the timer is started
hardware synchronizes to the next 32KHz clock edge resulting is a
variable delay moving the value in the preload register into the
count register. The maximum delay is one 32KHz clock period (30.5 us).
We work-around this delay by checking if the timer has been started
and not using the count value which is still 0. Instead we state zero
counts have elapsed.
Signed-off-by: Scott Worley <scott.worley@microchip.com>
Add a kernel timer driver for the MEC1501 32KHz RTOS timer.
This timer is a count down 32-bit counter clocked at a fixed
32768 Hz. It features one-shot, auto-reload, and halt count down
while the Cortex-M is halted by JTAG/SWD. This driver is based
on the new Intel local APIC driver. The driver was tuned for
accuracy at small sleep values. Added a work-around for RTOS
timer restart issue. RTOS timer driver requires board ticks per
second to be 32768 if tickless operation is configured.
Signed-off-by: Scott Worley <scott.worley@microchip.com>