Historically, stacks were just character buffers and could be treated
as such if the user wanted to look inside the stack data, and also
declared as an array of the desired stack size.
This is no longer the case. Certain architectures will create a memory
region much larger to account for MPU/MMU guard pages. Unfortunately,
the kernel interfaces treat both the declared stack, and the valid
stack buffer within it as the same char * data type, even though these
absolutely cannot be used interchangeably.
We introduce an opaque k_thread_stack_t which gets instantiated by
K_THREAD_STACK_DECLARE(), this is no longer treated by the compiler
as a character pointer, even though it really is.
To access the real stack buffer within, the result of
K_THREAD_STACK_BUFFER() can be used, which will return a char * type.
This should catch a bunch of programming mistakes at build time:
- Declaring a character array outside of K_THREAD_STACK_DECLARE() and
passing it to K_THREAD_CREATE
- Directly examining the stack created by K_THREAD_STACK_DECLARE()
which is not actually the memory desired and may trigger a CPU
exception
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Replace the existing Apache 2.0 boilerplate header with an SPDX tag
throughout the zephyr code tree. This patch was generated via a
script run over the master branch.
Also updated doc/porting/application.rst that had a dependency on
line numbers in a literal include.
Manually updated subsys/logging/sys_log.c that had a malformed
header in the original file. Also cleanup several cases that already
had a SPDX tag and we either got a duplicate or missed updating.
Jira: ZEP-1457
Change-Id: I6131a1d4ee0e58f5b938300c2d2fc77d2e69572c
Signed-off-by: David B. Kinder <david.b.kinder@intel.com>
Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
RISC-V is an open-source instruction set architecture.
Added support for the 32bit version of RISC-V to Zephyr.
1) exceptions/interrupts/faults are handled at the architecture
level via the __irq_wrapper handler. Context saving/restoring
of registers can be handled at both architecture and SOC levels.
If SOC-specific registers need to be saved, SOC level needs to
provide __soc_save_context and __soc_restore_context functions
that shall be accounted by the architecture level, when
corresponding config variable RISCV_SOC_CONTEXT_SAVE is set.
2) As RISC-V architecture does not provide a clear ISA specification
about interrupt handling, each RISC-V SOC handles it in its own
way. Hence, at the architecture level, the __irq_wrapper handler
expects the following functions to be provided by the SOC level:
__soc_is_irq: to check if the exception is the result of an
interrupt or not.
__soc_handle_irq: handle pending IRQ at SOC level (ex: clear
pending IRQ in SOC-specific IRQ register)
3) Thread/task scheduling, as well as IRQ offloading are handled via
the RISC-V system call ("ecall"), which is also handled via the
__irq_wrapper handler. The _Swap asm function just calls "ecall"
to generate an exception.
4) As there is no conventional way of handling CPU power save in
RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle
functions just unlock interrupts and return to the caller, without
issuing any CPU power saving instruction. Nonetheless, to allow
SOC-level to implement proper CPU power save, nano_cpu_idle and
nano_cpu_atomic_idle functions are defined as __weak
at the architecture level.
Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389
Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>