Future tickless kernel patches would be inserting some
code before call to Swap. To enable this it will create
a mcro named as the current _Swap which would call first
the tickless kernel code and then call the real __swap()
Jira: ZEP-339
Change-Id: Id778bfcee4f88982c958fcf22d7f04deb4bd572f
Signed-off-by: Ramesh Thomas <ramesh.thomas@intel.com>
This avoids asm files from having to explicitly define the _ASMLANGUAGE
symbol themselves.
Change-Id: I71f5a169f75d7443a58a0365a41c55b20dae3029
Signed-off-by: Benjamin Walsh <walsh.benj@gmail.com>
Replace the existing Apache 2.0 boilerplate header with an SPDX tag
throughout the zephyr code tree. This patch was generated via a
script run over the master branch.
Also updated doc/porting/application.rst that had a dependency on
line numbers in a literal include.
Manually updated subsys/logging/sys_log.c that had a malformed
header in the original file. Also cleanup several cases that already
had a SPDX tag and we either got a duplicate or missed updating.
Jira: ZEP-1457
Change-Id: I6131a1d4ee0e58f5b938300c2d2fc77d2e69572c
Signed-off-by: David B. Kinder <david.b.kinder@intel.com>
Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
These two fields in the thread structure control the preemptibility of a
thread.
sched_locked is decremented when the scheduler gets locked, which means
that the scheduler is locked for values 0xff to 0x01, since it can be
locked recursively. A thread is coop if its priority is negative, thus
if the prio field value is 0x80 to 0xff when looked at as an unsigned
value.
By putting them end-to-end, this means that a thread is non-preemptible
if the bundled value is greater than or equal to 0x0080. This is the
only thing the interrupt exit code has to check to decide to try a
reschedule or not.
Change-Id: I902d36c14859d0d7a951a6aa1bea164613821aca
Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
Some thread fields were 32-bit wide, when they are not even close to
using that full range of values. They are instead changed to 8-bit fields.
- prio can fit in one byte, limiting the priorities range to -128 to 127
- recursive scheduler locking can be limited to 255; a rollover results
most probably from a logic error
- flags are split into execution flags and thread states; 8 bits is
enough for each of them currently, with at worst two states and four
flags to spare (on x86, on other archs, there are six flags to spare)
Doing this saves 8 bytes per stack. It also sets up an incoming
enhancement when checking if the current thread is preemptible on
interrupt exit.
Change-Id: Ieb5321a5b99f99173b0605dd4a193c3bc7ddabf4
Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
Some kernel operations, like scheduler locking can be optmized out,
since coop threads lock the scheduler by their very nature. Also, the
interrupt exit path for all architecture does not have to do any
rescheduling, again by the nature of non-preemptible threads.
Change-Id: I270e926df3ce46e11d77270330f2f4b463971763
Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
The way the ready thread cache was implemented caused it to not always
be "hot", i.e. there could be some misses, which happened when the
cached thread was taken out of the ready queue. When that happened, it
was not replaced immediately, since doing so could mean that the
replacement might not run because the flow could be interrupted and
another thread could take its place. This was the more conservative
approach that insured that moving a thread to the cache would never be
wasted.
However, this caused two problems:
1. The cache could not be refilled until another thread context-switched
in, since there was no thread in the cache to compare priorities
against.
2. Interrupt exit code would always have to call into C to find what
thread to run when the current thread was not coop and did not have the
scheduler locked. Furthermore, it was possible for this code path to
encounter a cold cache and then it had to find out what thread to run
the long way.
To fix this, filling the cache is now more aggressive, i.e. the next
thread to put in the cache is found even in the case the current cached
thread is context-switched out. This ensures the interrupt exit code is
much faster on the slow path. In addition, since finding the next thread
to run is now always "get it from the cache", which is a simple fetch
from memory (_kernel.ready_q.cache), there is no need to call the more
complex C code.
On the ARM FRDM K64F board, this improvement is seen:
Before:
1- Measure time to switch from ISR back to interrupted task
switching time is 215 tcs = 1791 nsec
2- Measure time from ISR to executing a different task (rescheduled)
switch time is 315 tcs = 2625 nsec
After:
1- Measure time to switch from ISR back to interrupted task
switching time is 130 tcs = 1083 nsec
2- Measure time from ISR to executing a different task (rescheduled)
switch time is 225 tcs = 1875 nsec
These are the most dramatic improvements, but most of the numbers
generated by the latency_measure test are improved.
Fixes ZEP-1401.
Change-Id: I2eaac147048b1ec71a93bd0a285e743a39533973
Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
There was a lot of duplication between architectures for the definition
of threads and the "nanokernel" guts. These have been consolidated.
Now, a common file kernel/unified/include/kernel_structs.h holds the
common definitions. Architectures provide two files to complement it:
kernel_arch_data.h and kernel_arch_func.h. The first one contains at
least the struct _thread_arch and struct _kernel_arch data structures,
as well as the struct _callee_saved and struct _caller_saved register
layouts. The second file contains anything that needs what is provided
by the common stuff in kernel_structs.h. Those two files are only meant
to be included in kernel_structs.h in very specific locations.
The thread data structure has been separated into three major parts:
common struct _thread_base and struct k_thread, and arch-specific struct
_thread_arch. The first and third ones are included in the second.
The struct s_NANO data structure has been split into two: common struct
_kernel and arch-specific struct _kernel_arch. The latter is included in
the former.
Offsets files have also changed: nano_offsets.h has been renamed
kernel_offsets.h and is still included by the arch-specific offsets.c.
Also, since the thread and kernel data structures are now made of
sub-structures, offsets have to be added to make up the full offset.
Some of these additions have been consolidated in shorter symbols,
available from kernel/unified/include/offsets_short.h, which includes an
arch-specific offsets_arch_short.h. Most of the code include
offsets_short.h now instead of offsets.h.
Change-Id: I084645cb7e6db8db69aeaaf162963fe157045d5a
Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
With this patch we introduce unified kernel support for NIOS II.
Not all test cases have been ported, but the following command
currently succeeds with 43/43 passing test cases:
$ sanitycheck --arch=nios2 -xKERNEL_TYPE=unified \
--tag=unified_capable
Issue: ZEP-934
Change-Id: Id8effa0369a6a22c4d0a789fa2a8e108af0e0786
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
The toolchain headers included an abstraction for defining symbol
names in assembly context in the situation where we're using a
DOS-style assembler that automatically prepends an underscore to
symbol names.
We aren't. Zephyr is an ELF platform. None of our toolchains do
this. Nothing sets the "TOOL_PREPENDS_UNDERSCORE" macro from within
the project, and it surely isn't an industry standard. Yank it out.
Now we can write assembler labels in natural syntax, and a few other
things fall out to simplify too.
(NOTE: these headers contain assembly code and will fail checkpatch.
That is an expected false positive.)
Change-Id: Ic89e74422b52fe50b3b7306a0347d7a560259581
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
We are not going to handle unimplemented math instruction
exceptions at runtime. Remove remaining comments and exports
related to this. We don't need to leave a gap in the exception
stack frame for it either.
Change-Id: I4f1f3980a0e43bbf6f2f7488a9182f7acb06be05
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Before we were hard-coding them in the assembly file. Makes it
easier to alter the layout of the struct.
Change-Id: I619dc67c68ff87fe60de429a69b2f604292d270c
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
We want to pass along the stack pointer, not dereference it.
Change-Id: I554eff316bffe50654942746e7960b561abb413b
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Nios II CPUs vary in configuration on whether they support
'mul', 'mulx', and 'div' family of instructions. The compiler
can be told to use GCC integer library routines instead if
needed.
Ideally we would just pull the configuration out of system.h,
but pulling include file #defines into the Make environment
will involve some build system work that is best left to a
later improvement.
We've decided to take this build-time approach rather than
handle unimplemented instruction exceptions, so remove the
hook in exception.S
Change-Id: I05be0d5ed4c1a49b23dca1550ee66fd5891044d2
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
For this implementation, the presence of a value in global
_offload_routine signifies to the exception code that we should
enter the IRQ handling code even if there are no bits enabled
in ipending. The 'trap' instruction gets us into the exception
handling code.
Change-Id: Iac96adba0eaf24b54ac28678a31c26517867a4d2
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Supports Internal Interrupt Controller only for now; EIC
supoort tracked in ZEP-258.
Change-Id: I2d9c5180e61c06b377fce4bda8a59042b68d58f2
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>