zephyr/ext/hal/ksdk/drivers/fsl_cmt.c

261 lines
8.1 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_cmt.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* The standard intermediate frequency (IF). */
#define CMT_INTERMEDIATEFREQUENCY_8MHZ (8000000U)
/* CMT data modulate mask. */
#define CMT_MODULATE_COUNT_WIDTH (8U)
/* CMT diver 1. */
#define CMT_CMTDIV_ONE (1)
/* CMT diver 2. */
#define CMT_CMTDIV_TWO (2)
/* CMT diver 4. */
#define CMT_CMTDIV_FOUR (4)
/* CMT diver 8. */
#define CMT_CMTDIV_EIGHT (8)
/* CMT mode bit mask. */
#define CMT_MODE_BIT_MASK (CMT_MSC_MCGEN_MASK | CMT_MSC_FSK_MASK | CMT_MSC_BASE_MASK)
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get instance number for CMT module.
*
* @param base CMT peripheral base address.
*/
static uint32_t CMT_GetInstance(CMT_Type *base);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Pointers to cmt clocks for each instance. */
const clock_ip_name_t s_cmtClock[FSL_FEATURE_SOC_CMT_COUNT] = CMT_CLOCKS;
/*! @brief Pointers to cmt bases for each instance. */
static CMT_Type *const s_cmtBases[] = CMT_BASE_PTRS;
/*! @brief Pointers to cmt IRQ number for each instance. */
const IRQn_Type s_cmtIrqs[] = CMT_IRQS;
/*******************************************************************************
* Codes
******************************************************************************/
static uint32_t CMT_GetInstance(CMT_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < FSL_FEATURE_SOC_CMT_COUNT; instance++)
{
if (s_cmtBases[instance] == base)
{
break;
}
}
assert(instance < FSL_FEATURE_SOC_CMT_COUNT);
return instance;
}
void CMT_GetDefaultConfig(cmt_config_t *config)
{
assert(config);
/* Default infrared output is enabled and set with high active, the divider is set to 1. */
config->isInterruptEnabled = false;
config->isIroEnabled = true;
config->iroPolarity = kCMT_IROActiveHigh;
config->divider = kCMT_SecondClkDiv1;
}
void CMT_Init(CMT_Type *base, const cmt_config_t *config, uint32_t busClock_Hz)
{
assert(config);
assert(busClock_Hz >= CMT_INTERMEDIATEFREQUENCY_8MHZ);
uint8_t divider;
/* Ungate clock. */
CLOCK_EnableClock(s_cmtClock[CMT_GetInstance(base)]);
/* Sets clock divider. The divider set in pps should be set
to make sycClock_Hz/divder = 8MHz */
base->PPS = CMT_PPS_PPSDIV(busClock_Hz / CMT_INTERMEDIATEFREQUENCY_8MHZ - 1);
divider = base->MSC;
divider &= ~CMT_MSC_CMTDIV_MASK;
divider |= CMT_MSC_CMTDIV(config->divider);
base->MSC = divider;
/* Set the IRO signal. */
base->OC = CMT_OC_CMTPOL(config->iroPolarity) | CMT_OC_IROPEN(config->isIroEnabled);
/* Set interrupt. */
if (config->isInterruptEnabled)
{
CMT_EnableInterrupts(base, kCMT_EndOfCycleInterruptEnable);
EnableIRQ(s_cmtIrqs[CMT_GetInstance(base)]);
}
}
void CMT_Deinit(CMT_Type *base)
{
/*Disable the CMT modulator. */
base->MSC = 0;
/* Disable the interrupt. */
CMT_DisableInterrupts(base, kCMT_EndOfCycleInterruptEnable);
DisableIRQ(s_cmtIrqs[CMT_GetInstance(base)]);
/* Gate the clock. */
CLOCK_DisableClock(s_cmtClock[CMT_GetInstance(base)]);
}
void CMT_SetMode(CMT_Type *base, cmt_mode_t mode, cmt_modulate_config_t *modulateConfig)
{
uint8_t mscReg;
/* Set the mode. */
if (mode != kCMT_DirectIROCtl)
{
assert(modulateConfig);
/* Set carrier generator. */
CMT_SetCarrirGenerateCountOne(base, modulateConfig->highCount1, modulateConfig->lowCount1);
if (mode == kCMT_FSKMode)
{
CMT_SetCarrirGenerateCountTwo(base, modulateConfig->highCount2, modulateConfig->lowCount2);
}
/* Set carrier modulator. */
CMT_SetModulateMarkSpace(base, modulateConfig->markCount, modulateConfig->spaceCount);
}
/* Set the CMT mode. */
mscReg = base->MSC;
mscReg &= ~CMT_MODE_BIT_MASK;
mscReg |= mode;
base->MSC = mscReg;
}
cmt_mode_t CMT_GetMode(CMT_Type *base)
{
uint8_t mode = base->MSC;
if (!(mode & CMT_MSC_MCGEN_MASK))
{ /* Carrier modulator disabled and the IRO signal is in direct software control. */
return kCMT_DirectIROCtl;
}
else
{
/* Carrier modulator is enabled. */
if (mode & CMT_MSC_BASE_MASK)
{
/* Base band mode. */
return kCMT_BasebandMode;
}
else if (mode & CMT_MSC_FSK_MASK)
{
/* FSK mode. */
return kCMT_FSKMode;
}
else
{
/* Time mode. */
return kCMT_TimeMode;
}
}
}
uint32_t CMT_GetCMTFrequency(CMT_Type *base, uint32_t busClock_Hz)
{
uint32_t frequency;
uint32_t divider;
/* Get intermediate frequency. */
frequency = busClock_Hz / ((base->PPS & CMT_PPS_PPSDIV_MASK) + 1);
/* Get the second divider. */
divider = ((base->MSC & CMT_MSC_CMTDIV_MASK) >> CMT_MSC_CMTDIV_SHIFT);
/* Get CMT frequency. */
switch ((cmt_second_clkdiv_t)divider)
{
case kCMT_SecondClkDiv1:
frequency = frequency / CMT_CMTDIV_ONE;
break;
case kCMT_SecondClkDiv2:
frequency = frequency / CMT_CMTDIV_TWO;
break;
case kCMT_SecondClkDiv4:
frequency = frequency / CMT_CMTDIV_FOUR;
break;
case kCMT_SecondClkDiv8:
frequency = frequency / CMT_CMTDIV_EIGHT;
break;
default:
frequency = frequency / CMT_CMTDIV_ONE;
break;
}
return frequency;
}
void CMT_SetModulateMarkSpace(CMT_Type *base, uint32_t markCount, uint32_t spaceCount)
{
/* Set modulate mark. */
base->CMD1 = (markCount >> CMT_MODULATE_COUNT_WIDTH) & CMT_CMD1_MB_MASK;
base->CMD2 = (markCount & CMT_CMD2_MB_MASK);
/* Set modulate space. */
base->CMD3 = (spaceCount >> CMT_MODULATE_COUNT_WIDTH) & CMT_CMD3_SB_MASK;
base->CMD4 = spaceCount & CMT_CMD4_SB_MASK;
}
void CMT_SetIroState(CMT_Type *base, cmt_infrared_output_state_t state)
{
uint8_t ocReg = base->OC;
ocReg &= ~CMT_OC_IROL_MASK;
ocReg |= CMT_OC_IROL(state);
/* Set the infrared output signal control. */
base->OC = ocReg;
}