zephyr/kernel/work_q.c

146 lines
2.9 KiB
C
Raw Normal View History

unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
/*
* Copyright (c) 2016 Intel Corporation
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
* Copyright (c) 2016 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
*/
/**
* @file
*
* Workqueue support functions
*/
kernel/arch: consolidate tTCS and TNANO definitions There was a lot of duplication between architectures for the definition of threads and the "nanokernel" guts. These have been consolidated. Now, a common file kernel/unified/include/kernel_structs.h holds the common definitions. Architectures provide two files to complement it: kernel_arch_data.h and kernel_arch_func.h. The first one contains at least the struct _thread_arch and struct _kernel_arch data structures, as well as the struct _callee_saved and struct _caller_saved register layouts. The second file contains anything that needs what is provided by the common stuff in kernel_structs.h. Those two files are only meant to be included in kernel_structs.h in very specific locations. The thread data structure has been separated into three major parts: common struct _thread_base and struct k_thread, and arch-specific struct _thread_arch. The first and third ones are included in the second. The struct s_NANO data structure has been split into two: common struct _kernel and arch-specific struct _kernel_arch. The latter is included in the former. Offsets files have also changed: nano_offsets.h has been renamed kernel_offsets.h and is still included by the arch-specific offsets.c. Also, since the thread and kernel data structures are now made of sub-structures, offsets have to be added to make up the full offset. Some of these additions have been consolidated in shorter symbols, available from kernel/unified/include/offsets_short.h, which includes an arch-specific offsets_arch_short.h. Most of the code include offsets_short.h now instead of offsets.h. Change-Id: I084645cb7e6db8db69aeaaf162963fe157045d5a Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-11-08 23:36:50 +08:00
#include <kernel_structs.h>
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
#include <wait_q.h>
#include <errno.h>
static void work_q_main(void *work_q_ptr, void *p2, void *p3)
{
struct k_work_q *work_q = work_q_ptr;
ARG_UNUSED(p2);
ARG_UNUSED(p3);
while (1) {
struct k_work *work;
k_work_handler_t handler;
work = k_queue_get(&work_q->queue, K_FOREVER);
if (!work) {
continue;
}
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
handler = work->handler;
/* Reset pending state so it can be resubmitted by handler */
if (atomic_test_and_clear_bit(work->flags,
K_WORK_STATE_PENDING)) {
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
handler(work);
}
/* Make sure we don't hog up the CPU if the FIFO never (or
* very rarely) gets empty.
*/
k_yield();
}
}
void k_work_q_start(struct k_work_q *work_q, k_thread_stack_t *stack,
size_t stack_size, int prio)
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
{
k_queue_init(&work_q->queue);
k_thread_create(&work_q->thread, stack, stack_size, work_q_main,
work_q, 0, 0, prio, 0, 0);
kernel: introduce object validation mechanism All system calls made from userspace which involve pointers to kernel objects (including device drivers) will need to have those pointers validated; userspace should never be able to crash the kernel by passing it garbage. The actual validation with _k_object_validate() will be in the system call receiver code, which doesn't exist yet. - CONFIG_USERSPACE introduced. We are somewhat far away from having an end-to-end implementation, but at least need a Kconfig symbol to guard the incoming code with. Formal documentation doesn't exist yet either, but will appear later down the road once the implementation is mostly finalized. - In the memory region for RAM, the data section has been moved last, past bss and noinit. This ensures that inserting generated tables with addresses of kernel objects does not change the addresses of those objects (which would make the table invalid) - The DWARF debug information in the generated ELF binary is parsed to fetch the locations of all kernel objects and pass this to gperf to create a perfect hash table of their memory addresses. - The generated gperf code doesn't know that we are exclusively working with memory addresses and uses memory inefficently. A post-processing script process_gperf.py adjusts the generated code before it is compiled to work with pointer values directly and not strings containing them. - _k_object_init() calls inserted into the init functions for the set of kernel object types we are going to support so far Issue: ZEP-2187 Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
2017-08-23 04:15:23 +08:00
_k_object_init(work_q);
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
}
#ifdef CONFIG_SYS_CLOCK_EXISTS
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
static void work_timeout(struct _timeout *t)
{
struct k_delayed_work *w = CONTAINER_OF(t, struct k_delayed_work,
timeout);
/* submit work to workqueue */
k_work_submit_to_queue(w->work_q, &w->work);
}
void k_delayed_work_init(struct k_delayed_work *work, k_work_handler_t handler)
{
k_work_init(&work->work, handler);
_init_timeout(&work->timeout, work_timeout);
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
work->work_q = NULL;
kernel: introduce object validation mechanism All system calls made from userspace which involve pointers to kernel objects (including device drivers) will need to have those pointers validated; userspace should never be able to crash the kernel by passing it garbage. The actual validation with _k_object_validate() will be in the system call receiver code, which doesn't exist yet. - CONFIG_USERSPACE introduced. We are somewhat far away from having an end-to-end implementation, but at least need a Kconfig symbol to guard the incoming code with. Formal documentation doesn't exist yet either, but will appear later down the road once the implementation is mostly finalized. - In the memory region for RAM, the data section has been moved last, past bss and noinit. This ensures that inserting generated tables with addresses of kernel objects does not change the addresses of those objects (which would make the table invalid) - The DWARF debug information in the generated ELF binary is parsed to fetch the locations of all kernel objects and pass this to gperf to create a perfect hash table of their memory addresses. - The generated gperf code doesn't know that we are exclusively working with memory addresses and uses memory inefficently. A post-processing script process_gperf.py adjusts the generated code before it is compiled to work with pointer values directly and not strings containing them. - _k_object_init() calls inserted into the init functions for the set of kernel object types we are going to support so far Issue: ZEP-2187 Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
2017-08-23 04:15:23 +08:00
_k_object_init(work);
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
}
int k_delayed_work_submit_to_queue(struct k_work_q *work_q,
struct k_delayed_work *work,
s32_t delay)
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
{
int key = irq_lock();
int err;
/* Work cannot be active in multiple queues */
if (work->work_q && work->work_q != work_q) {
err = -EADDRINUSE;
goto done;
}
/* Cancel if work has been submitted */
if (work->work_q == work_q) {
err = k_delayed_work_cancel(work);
if (err < 0) {
goto done;
}
}
/* Attach workqueue so the timeout callback can submit it */
work->work_q = work_q;
if (!delay) {
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
/* Submit work if no ticks is 0 */
k_work_submit_to_queue(work_q, &work->work);
} else {
/* Add timeout */
_add_timeout(NULL, &work->timeout, NULL,
_TICK_ALIGN + _ms_to_ticks(delay));
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
}
err = 0;
done:
irq_unlock(key);
return err;
}
int k_delayed_work_cancel(struct k_delayed_work *work)
{
int key = irq_lock();
if (!work->work_q) {
irq_unlock(key);
return -EINVAL;
}
if (k_work_pending(&work->work)) {
/* Remove from the queue if already submitted */
if (!k_queue_remove(&work->work_q->queue, &work->work)) {
irq_unlock(key);
return -EINVAL;
}
} else {
_abort_timeout(&work->timeout);
}
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
/* Detach from workqueue */
work->work_q = NULL;
atomic_clear_bit(work->work.flags, K_WORK_STATE_PENDING);
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
irq_unlock(key);
return 0;
}
#endif /* CONFIG_SYS_CLOCK_EXISTS */