zephyr/lib/libc/minimal/source/math/sqrt.c

57 lines
1.4 KiB
C
Raw Normal View History

/*
* Copyright (c) 2019 Vestas Wind Systems A/S
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <zephyr/sys/util.h>
#define MAX_D_ITTERATIONS 8 /* usually converges in 5 loops */
/* this ensures we break out of the loop */
#define MAX_D_ERROR_COUNT 5 /* when result almost converges, stop */
#define EXP_MASK64 GENMASK64(62, 52)
double sqrt(double square)
{
int i;
int64_t exponent;
double root;
double last;
int64_t *p_square = (int64_t *)&square;
int64_t *p_root = (int64_t *)&root;
int64_t *p_last = (int64_t *)&last;
if (square == 0.0) {
return square;
}
if (square < 0.0) {
return (square - square) / (square - square);
}
/* we need a good starting guess so that this will converge quickly,
* we can do this by dividing the exponent part of the float by 2
* this assumes IEEE-754 format doubles
*/
exponent = ((*p_square & EXP_MASK64)>>52)-1023;
if (exponent == 0x7FF-1023) {
/* the number is a NAN or inf, return NaN or inf */
return square + square;
}
exponent /= 2;
*p_root = (*p_square & ~EXP_MASK64) | (exponent+1023)<<52;
for (i = 0; i < MAX_D_ITTERATIONS; i++) {
last = root;
root = (root + square / root) * 0.5;
/* if (llabs(*p_root-*p_last)<MAX_D_ERROR_COUNT) */
if ((*p_root ^ *p_last) < MAX_D_ERROR_COUNT) {
break;
}
}
return root;
}