arch: added support for the riscv32 architecture
RISC-V is an open-source instruction set architecture.
Added support for the 32bit version of RISC-V to Zephyr.
1) exceptions/interrupts/faults are handled at the architecture
level via the __irq_wrapper handler. Context saving/restoring
of registers can be handled at both architecture and SOC levels.
If SOC-specific registers need to be saved, SOC level needs to
provide __soc_save_context and __soc_restore_context functions
that shall be accounted by the architecture level, when
corresponding config variable RISCV_SOC_CONTEXT_SAVE is set.
2) As RISC-V architecture does not provide a clear ISA specification
about interrupt handling, each RISC-V SOC handles it in its own
way. Hence, at the architecture level, the __irq_wrapper handler
expects the following functions to be provided by the SOC level:
__soc_is_irq: to check if the exception is the result of an
interrupt or not.
__soc_handle_irq: handle pending IRQ at SOC level (ex: clear
pending IRQ in SOC-specific IRQ register)
3) Thread/task scheduling, as well as IRQ offloading are handled via
the RISC-V system call ("ecall"), which is also handled via the
__irq_wrapper handler. The _Swap asm function just calls "ecall"
to generate an exception.
4) As there is no conventional way of handling CPU power save in
RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle
functions just unlock interrupts and return to the caller, without
issuing any CPU power saving instruction. Nonetheless, to allow
SOC-level to implement proper CPU power save, nano_cpu_idle and
nano_cpu_atomic_idle functions are defined as __weak
at the architecture level.
Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389
Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 07:24:30 +08:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2016 Jean-Paul Etienne <fractalclone@gmail.com>
|
|
|
|
*
|
2017-01-19 09:01:01 +08:00
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
arch: added support for the riscv32 architecture
RISC-V is an open-source instruction set architecture.
Added support for the 32bit version of RISC-V to Zephyr.
1) exceptions/interrupts/faults are handled at the architecture
level via the __irq_wrapper handler. Context saving/restoring
of registers can be handled at both architecture and SOC levels.
If SOC-specific registers need to be saved, SOC level needs to
provide __soc_save_context and __soc_restore_context functions
that shall be accounted by the architecture level, when
corresponding config variable RISCV_SOC_CONTEXT_SAVE is set.
2) As RISC-V architecture does not provide a clear ISA specification
about interrupt handling, each RISC-V SOC handles it in its own
way. Hence, at the architecture level, the __irq_wrapper handler
expects the following functions to be provided by the SOC level:
__soc_is_irq: to check if the exception is the result of an
interrupt or not.
__soc_handle_irq: handle pending IRQ at SOC level (ex: clear
pending IRQ in SOC-specific IRQ register)
3) Thread/task scheduling, as well as IRQ offloading are handled via
the RISC-V system call ("ecall"), which is also handled via the
__irq_wrapper handler. The _Swap asm function just calls "ecall"
to generate an exception.
4) As there is no conventional way of handling CPU power save in
RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle
functions just unlock interrupts and return to the caller, without
issuing any CPU power saving instruction. Nonetheless, to allow
SOC-level to implement proper CPU power save, nano_cpu_idle and
nano_cpu_atomic_idle functions are defined as __weak
at the architecture level.
Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389
Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 07:24:30 +08:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <irq.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* In RISC-V there is no conventional way to handle CPU power save.
|
|
|
|
* Each RISC-V SOC handles it in its own way.
|
2017-04-09 23:57:54 +08:00
|
|
|
* Hence, by default, k_cpu_idle and k_cpu_atomic_idle functions just
|
arch: added support for the riscv32 architecture
RISC-V is an open-source instruction set architecture.
Added support for the 32bit version of RISC-V to Zephyr.
1) exceptions/interrupts/faults are handled at the architecture
level via the __irq_wrapper handler. Context saving/restoring
of registers can be handled at both architecture and SOC levels.
If SOC-specific registers need to be saved, SOC level needs to
provide __soc_save_context and __soc_restore_context functions
that shall be accounted by the architecture level, when
corresponding config variable RISCV_SOC_CONTEXT_SAVE is set.
2) As RISC-V architecture does not provide a clear ISA specification
about interrupt handling, each RISC-V SOC handles it in its own
way. Hence, at the architecture level, the __irq_wrapper handler
expects the following functions to be provided by the SOC level:
__soc_is_irq: to check if the exception is the result of an
interrupt or not.
__soc_handle_irq: handle pending IRQ at SOC level (ex: clear
pending IRQ in SOC-specific IRQ register)
3) Thread/task scheduling, as well as IRQ offloading are handled via
the RISC-V system call ("ecall"), which is also handled via the
__irq_wrapper handler. The _Swap asm function just calls "ecall"
to generate an exception.
4) As there is no conventional way of handling CPU power save in
RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle
functions just unlock interrupts and return to the caller, without
issuing any CPU power saving instruction. Nonetheless, to allow
SOC-level to implement proper CPU power save, nano_cpu_idle and
nano_cpu_atomic_idle functions are defined as __weak
at the architecture level.
Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389
Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 07:24:30 +08:00
|
|
|
* unlock interrupts and return to the caller, without issuing any CPU power
|
|
|
|
* saving instruction.
|
|
|
|
*
|
2017-04-09 23:57:54 +08:00
|
|
|
* Nonetheless, define the default k_cpu_idle and k_cpu_atomic_idle
|
arch: added support for the riscv32 architecture
RISC-V is an open-source instruction set architecture.
Added support for the 32bit version of RISC-V to Zephyr.
1) exceptions/interrupts/faults are handled at the architecture
level via the __irq_wrapper handler. Context saving/restoring
of registers can be handled at both architecture and SOC levels.
If SOC-specific registers need to be saved, SOC level needs to
provide __soc_save_context and __soc_restore_context functions
that shall be accounted by the architecture level, when
corresponding config variable RISCV_SOC_CONTEXT_SAVE is set.
2) As RISC-V architecture does not provide a clear ISA specification
about interrupt handling, each RISC-V SOC handles it in its own
way. Hence, at the architecture level, the __irq_wrapper handler
expects the following functions to be provided by the SOC level:
__soc_is_irq: to check if the exception is the result of an
interrupt or not.
__soc_handle_irq: handle pending IRQ at SOC level (ex: clear
pending IRQ in SOC-specific IRQ register)
3) Thread/task scheduling, as well as IRQ offloading are handled via
the RISC-V system call ("ecall"), which is also handled via the
__irq_wrapper handler. The _Swap asm function just calls "ecall"
to generate an exception.
4) As there is no conventional way of handling CPU power save in
RISC-V, the default nano_cpu_idle and nano_cpu_atomic_idle
functions just unlock interrupts and return to the caller, without
issuing any CPU power saving instruction. Nonetheless, to allow
SOC-level to implement proper CPU power save, nano_cpu_idle and
nano_cpu_atomic_idle functions are defined as __weak
at the architecture level.
Change-Id: I980a161d0009f3f404ad22b226a6229fbb492389
Signed-off-by: Jean-Paul Etienne <fractalclone@gmail.com>
2017-01-11 07:24:30 +08:00
|
|
|
* functions as weak functions, so that they can be replaced at the SOC-level.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
*
|
|
|
|
* @brief Power save idle routine
|
|
|
|
*
|
|
|
|
* This function will be called by the kernel idle loop or possibly within
|
|
|
|
* an implementation of _sys_power_save_idle in the kernel when the
|
|
|
|
* '_sys_power_save_flag' variable is non-zero.
|
|
|
|
*
|
|
|
|
* @return N/A
|
|
|
|
*/
|
|
|
|
void __weak k_cpu_idle(void)
|
|
|
|
{
|
|
|
|
irq_unlock(SOC_MSTATUS_IEN);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
*
|
|
|
|
* @brief Atomically re-enable interrupts and enter low power mode
|
|
|
|
*
|
|
|
|
* INTERNAL
|
|
|
|
* The requirements for k_cpu_atomic_idle() are as follows:
|
|
|
|
* 1) The enablement of interrupts and entering a low-power mode needs to be
|
|
|
|
* atomic, i.e. there should be no period of time where interrupts are
|
|
|
|
* enabled before the processor enters a low-power mode. See the comments
|
|
|
|
* in k_lifo_get(), for example, of the race condition that
|
|
|
|
* occurs if this requirement is not met.
|
|
|
|
*
|
|
|
|
* 2) After waking up from the low-power mode, the interrupt lockout state
|
|
|
|
* must be restored as indicated in the 'imask' input parameter.
|
|
|
|
*
|
|
|
|
* @return N/A
|
|
|
|
*/
|
|
|
|
void __weak k_cpu_atomic_idle(unsigned int key)
|
|
|
|
{
|
|
|
|
irq_unlock(key);
|
|
|
|
}
|