zephyr/drivers/adc/adc_xmc4xxx.c

343 lines
9.2 KiB
C
Raw Normal View History

/*
* Copyright (c) 2022 Andriy Gelman, andriy.gelman@gmail.com
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT infineon_xmc4xxx_adc
#include <errno.h>
#include <soc.h>
#include <stdint.h>
#include <xmc_scu.h>
#include <xmc_vadc.h>
#include <zephyr/drivers/adc.h>
#include <zephyr/device.h>
#include <zephyr/irq.h>
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(adc_xmc4xxx);
#define XMC4XXX_CHANNEL_COUNT 8
struct adc_xmc4xxx_data {
struct adc_context ctx;
const struct device *dev;
uint16_t *buffer;
uint16_t *repeat_buffer;
uint8_t channel_mask;
};
struct adc_xmc4xxx_cfg {
XMC_VADC_GROUP_t *base;
void (*irq_cfg_func)(void);
uint8_t irq_num;
};
static bool adc_global_init;
static XMC_VADC_GLOBAL_t *const adc_global_ptr = (XMC_VADC_GLOBAL_t *)0x40004000;
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct adc_xmc4xxx_data *data = CONTAINER_OF(ctx, struct adc_xmc4xxx_data, ctx);
const struct device *dev = data->dev;
const struct adc_xmc4xxx_cfg *config = dev->config;
VADC_G_TypeDef *adc_group = config->base;
data->repeat_buffer = data->buffer;
XMC_VADC_GROUP_ScanTriggerConversion(adc_group);
XMC_VADC_GROUP_ScanEnableArbitrationSlot(adc_group);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat_sampling)
{
struct adc_xmc4xxx_data *data = CONTAINER_OF(ctx, struct adc_xmc4xxx_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static void adc_xmc4xxx_isr(const struct device *dev)
{
struct adc_xmc4xxx_data *data = dev->data;
const struct adc_xmc4xxx_cfg *config = dev->config;
XMC_VADC_GROUP_t *adc_group = config->base;
uint32_t channel_mask = data->channel_mask;
uint32_t ch;
/* Conversion has completed. */
while (channel_mask > 0) {
ch = find_lsb_set(channel_mask) - 1;
*data->buffer++ = XMC_VADC_GROUP_GetResult(adc_group, ch);
channel_mask &= ~BIT(ch);
}
adc_context_on_sampling_done(&data->ctx, dev);
LOG_DBG("%s ISR triggered.", dev->name);
}
static int adc_xmc4xxx_validate_buffer_size(const struct adc_sequence *sequence)
{
int active_channels = 0;
int total_buffer_size;
for (int i = 0; i < XMC4XXX_CHANNEL_COUNT; i++) {
if (sequence->channels & BIT(i)) {
active_channels++;
}
}
total_buffer_size = active_channels * sizeof(uint16_t);
if (sequence->options) {
total_buffer_size *= (1 + sequence->options->extra_samplings);
}
if (sequence->buffer_size < total_buffer_size) {
return -ENOMEM;
}
return 0;
}
static int start_read(const struct device *dev,
const struct adc_sequence *sequence)
{
int ret;
struct adc_xmc4xxx_data *data = dev->data;
const struct adc_xmc4xxx_cfg *config = dev->config;
XMC_VADC_GROUP_t *adc_group = config->base;
uint32_t requested_channels = sequence->channels;
uint8_t resolution = sequence->resolution;
uint32_t configured_channels = adc_group->ASSEL & requested_channels;
XMC_VADC_GROUP_CLASS_t group_class = {0};
if (requested_channels == 0) {
LOG_ERR("No channels requested");
return -EINVAL;
}
if (requested_channels != configured_channels) {
LOG_ERR("Selected channels not configured");
return -EINVAL;
}
if (sequence->oversampling) {
LOG_ERR("Oversampling not supported");
return -ENOTSUP;
}
ret = adc_xmc4xxx_validate_buffer_size(sequence);
if (ret < 0) {
LOG_ERR("Invalid sequence buffer size");
return ret;
}
if (resolution == 8) {
group_class.conversion_mode_standard = XMC_VADC_CONVMODE_8BIT;
} else if (resolution == 10) {
group_class.conversion_mode_standard = XMC_VADC_CONVMODE_10BIT;
} else if (resolution == 12) {
group_class.conversion_mode_standard = XMC_VADC_CONVMODE_12BIT;
} else {
LOG_ERR("Invalid resolution");
return -EINVAL;
}
XMC_VADC_GROUP_InputClassInit(adc_group, group_class, XMC_VADC_GROUP_CONV_STD, 0);
data->channel_mask = requested_channels;
data->buffer = sequence->buffer;
adc_context_start_read(&data->ctx, sequence);
return adc_context_wait_for_completion(&data->ctx);
}
static int adc_xmc4xxx_read(const struct device *dev,
const struct adc_sequence *sequence)
{
int ret;
struct adc_xmc4xxx_data *data = dev->data;
adc_context_lock(&data->ctx, false, NULL);
ret = start_read(dev, sequence);
adc_context_release(&data->ctx, ret);
return ret;
}
#ifdef CONFIG_ADC_ASYNC
static int adc_xmc4xxx_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
int ret;
struct adc_xmc4xxx_data *data = dev->data;
adc_context_lock(&data->ctx, true, async);
ret = start_read(dev, sequence);
adc_context_release(&data->ctx, ret);
return ret;
}
#endif
static int adc_xmc4xxx_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
const struct adc_xmc4xxx_cfg *config = dev->config;
VADC_G_TypeDef *adc_group = config->base;
uint32_t ch_num = channel_cfg->channel_id;
XMC_VADC_CHANNEL_CONFIG_t channel_config = {0};
if (ch_num >= XMC4XXX_CHANNEL_COUNT) {
LOG_ERR("Channel %d is not valid", ch_num);
return -EINVAL;
}
if (channel_cfg->differential) {
LOG_ERR("Differential channels are not supported");
return -EINVAL;
}
if (channel_cfg->gain != ADC_GAIN_1) {
LOG_ERR("Invalid channel gain");
return -EINVAL;
}
if (channel_cfg->reference != ADC_REF_INTERNAL) {
LOG_ERR("Invalid channel reference");
return -EINVAL;
}
if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
LOG_ERR("Invalid acquisition time");
return -EINVAL;
}
/* check that the group global calibration has successfully finished */
if (adc_group->ARBCFG & VADC_G_ARBCFG_CAL_Msk) {
LOG_WRN("Group calibration hasn't completed yet");
return -EBUSY;
}
channel_config.channel_priority = true;
channel_config.result_reg_number = ch_num;
channel_config.result_alignment = XMC_VADC_RESULT_ALIGN_RIGHT;
channel_config.alias_channel = -1; /* do not alias channel */
XMC_VADC_GROUP_ChannelInit(adc_group, ch_num, &channel_config);
adc_group->RCR[ch_num] = 0;
XMC_VADC_GROUP_ScanAddChannelToSequence(adc_group, ch_num);
return 0;
}
#define VADC_IRQ_MIN 18
#define IRQS_PER_VADC_GROUP 4
static int adc_xmc4xxx_init(const struct device *dev)
{
struct adc_xmc4xxx_data *data = dev->data;
const struct adc_xmc4xxx_cfg *config = dev->config;
VADC_G_TypeDef *adc_group = config->base;
uint8_t service_request;
data->dev = dev;
config->irq_cfg_func();
if (adc_global_init == 0) {
/* defined using xmc_device.h */
#ifdef CLOCK_GATING_SUPPORTED
XMC_SCU_CLOCK_UngatePeripheralClock(XMC_SCU_PERIPHERAL_CLOCK_VADC);
#endif
/* Reset the Hardware */
XMC_SCU_RESET_DeassertPeripheralReset(XMC_SCU_PERIPHERAL_RESET_VADC);
/* enable the module clock */
adc_global_ptr->CLC = 0;
/* global configuration register - defines clock divider to adc clock */
/* automatic post calibration after each conversion is enabled */
adc_global_ptr->GLOBCFG = 0;
/* global result control register is unused */
adc_global_ptr->GLOBRCR = 0;
/* global bound register is unused */
adc_global_ptr->GLOBBOUND = 0;
adc_global_init = 1;
}
adc_group->ARBCFG = 0;
adc_group->BOUND = 0;
XMC_VADC_GROUP_SetPowerMode(adc_group, XMC_VADC_GROUP_POWERMODE_NORMAL);
/* Initiate calibration. It is initialized for all groups. Check that the */
/* calibration completed in the channel setup. */
adc_global_ptr->GLOBCFG |= VADC_GLOBCFG_SUCAL_Msk;
XMC_VADC_GROUP_BackgroundDisableArbitrationSlot(adc_group);
XMC_VADC_GROUP_ScanDisableArbitrationSlot(adc_group);
service_request = (config->irq_num - VADC_IRQ_MIN) % IRQS_PER_VADC_GROUP;
XMC_VADC_GROUP_ScanSetGatingMode(adc_group, XMC_VADC_GATEMODE_IGNORE);
XMC_VADC_GROUP_ScanSetReqSrcEventInterruptNode(adc_group, service_request);
XMC_VADC_GROUP_ScanEnableEvent(adc_group);
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct adc_driver_api api_xmc4xxx_driver_api = {
.channel_setup = adc_xmc4xxx_channel_setup,
.read = adc_xmc4xxx_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = adc_xmc4xxx_read_async,
#endif
.ref_internal = DT_INST_PROP(0, vref_internal_mv),
};
#define ADC_XMC4XXX_CONFIG(index) \
static void adc_xmc4xxx_cfg_func_##index(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(index), \
DT_INST_IRQ(index, priority), \
adc_xmc4xxx_isr, DEVICE_DT_INST_GET(index), 0); \
irq_enable(DT_INST_IRQN(index)); \
} \
\
static const struct adc_xmc4xxx_cfg adc_xmc4xxx_cfg_##index = { \
.base = (VADC_G_TypeDef *)DT_INST_REG_ADDR(index), \
.irq_cfg_func = adc_xmc4xxx_cfg_func_##index, \
.irq_num = DT_INST_IRQN(index), \
};
#define ADC_XMC4XXX_INIT(index) \
ADC_XMC4XXX_CONFIG(index) \
\
static struct adc_xmc4xxx_data adc_xmc4xxx_data_##index = { \
ADC_CONTEXT_INIT_TIMER(adc_xmc4xxx_data_##index, ctx), \
ADC_CONTEXT_INIT_LOCK(adc_xmc4xxx_data_##index, ctx), \
ADC_CONTEXT_INIT_SYNC(adc_xmc4xxx_data_##index, ctx), \
}; \
\
DEVICE_DT_INST_DEFINE(index, \
&adc_xmc4xxx_init, NULL, \
&adc_xmc4xxx_data_##index, &adc_xmc4xxx_cfg_##index, \
POST_KERNEL, CONFIG_ADC_INIT_PRIORITY, \
&api_xmc4xxx_driver_api);
DT_INST_FOREACH_STATUS_OKAY(ADC_XMC4XXX_INIT)