mcuboot/boot/espressif/port/esp_mcuboot.c

421 lines
12 KiB
C

/*
* SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <bootutil/bootutil.h>
#include <bootutil/bootutil_log.h>
#include "sdkconfig.h"
#include "esp_err.h"
#include "bootloader_flash_priv.h"
#include "esp_flash_encrypt.h"
#include "flash_map_backend/flash_map_backend.h"
#include "sysflash/sysflash.h"
#ifndef ARRAY_SIZE
# define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
#endif
#ifndef MIN
# define MIN(a, b) (((a) < (b)) ? (a) : (b))
#endif
#ifndef ALIGN_UP
# define ALIGN_UP(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
#endif
#ifndef ALIGN_DOWN
# define ALIGN_DOWN(num, align) ((num) & ~((align) - 1))
#endif
#ifndef ALIGN_OFFSET
# define ALIGN_OFFSET(num, align) ((num) & ((align) - 1))
#endif
#ifndef IS_ALIGNED
# define IS_ALIGNED(num, align) (ALIGN_OFFSET((num), (align)) == 0)
#endif
#define FLASH_BUFFER_SIZE 256 /* SPI Flash block size */
_Static_assert(IS_ALIGNED(FLASH_BUFFER_SIZE, 4), "Buffer size for SPI Flash operations must be 4-byte aligned.");
#define BOOTLOADER_START_ADDRESS CONFIG_BOOTLOADER_OFFSET_IN_FLASH
#define BOOTLOADER_SIZE CONFIG_ESP_BOOTLOADER_SIZE
#define IMAGE0_PRIMARY_START_ADDRESS CONFIG_ESP_IMAGE0_PRIMARY_START_ADDRESS
#define IMAGE0_SECONDARY_START_ADDRESS CONFIG_ESP_IMAGE0_SECONDARY_START_ADDRESS
#define SCRATCH_OFFSET CONFIG_ESP_SCRATCH_OFFSET
#if (MCUBOOT_IMAGE_NUMBER == 2)
#define IMAGE1_PRIMARY_START_ADDRESS CONFIG_ESP_IMAGE1_PRIMARY_START_ADDRESS
#define IMAGE1_SECONDARY_START_ADDRESS CONFIG_ESP_IMAGE1_SECONDARY_START_ADDRESS
#endif
#define APPLICATION_SIZE CONFIG_ESP_APPLICATION_SIZE
#define SCRATCH_SIZE CONFIG_ESP_SCRATCH_SIZE
extern int ets_printf(const char *fmt, ...);
static const struct flash_area bootloader = {
.fa_id = FLASH_AREA_BOOTLOADER,
.fa_device_id = FLASH_DEVICE_INTERNAL_FLASH,
.fa_off = BOOTLOADER_START_ADDRESS,
.fa_size = BOOTLOADER_SIZE,
};
static const struct flash_area primary_img0 = {
.fa_id = FLASH_AREA_IMAGE_PRIMARY(0),
.fa_device_id = FLASH_DEVICE_INTERNAL_FLASH,
.fa_off = IMAGE0_PRIMARY_START_ADDRESS,
.fa_size = APPLICATION_SIZE,
};
static const struct flash_area secondary_img0 = {
.fa_id = FLASH_AREA_IMAGE_SECONDARY(0),
.fa_device_id = FLASH_DEVICE_INTERNAL_FLASH,
.fa_off = IMAGE0_SECONDARY_START_ADDRESS,
.fa_size = APPLICATION_SIZE,
};
#if (MCUBOOT_IMAGE_NUMBER == 2)
static const struct flash_area primary_img1 = {
.fa_id = FLASH_AREA_IMAGE_PRIMARY(1),
.fa_device_id = FLASH_DEVICE_INTERNAL_FLASH,
.fa_off = IMAGE1_PRIMARY_START_ADDRESS,
.fa_size = APPLICATION_SIZE,
};
static const struct flash_area secondary_img1 = {
.fa_id = FLASH_AREA_IMAGE_SECONDARY(1),
.fa_device_id = FLASH_DEVICE_INTERNAL_FLASH,
.fa_off = IMAGE1_SECONDARY_START_ADDRESS,
.fa_size = APPLICATION_SIZE,
};
#endif
static const struct flash_area scratch_img0 = {
.fa_id = FLASH_AREA_IMAGE_SCRATCH,
.fa_device_id = FLASH_DEVICE_INTERNAL_FLASH,
.fa_off = SCRATCH_OFFSET,
.fa_size = SCRATCH_SIZE,
};
static const struct flash_area *s_flash_areas[] = {
&bootloader,
&primary_img0,
&secondary_img0,
#if (MCUBOOT_IMAGE_NUMBER == 2)
&primary_img1,
&secondary_img1,
#endif
&scratch_img0,
};
static const struct flash_area *prv_lookup_flash_area(uint8_t id) {
for (size_t i = 0; i < ARRAY_SIZE(s_flash_areas); i++) {
const struct flash_area *area = s_flash_areas[i];
if (id == area->fa_id) {
return area;
}
}
return NULL;
}
int flash_area_open(uint8_t id, const struct flash_area **area_outp)
{
BOOT_LOG_DBG("%s: ID=%d", __func__, (int)id);
const struct flash_area *area = prv_lookup_flash_area(id);
*area_outp = area;
return area != NULL ? 0 : -1;
}
void flash_area_close(const struct flash_area *area)
{
}
static bool aligned_flash_read(uintptr_t addr, void *dest, size_t size)
{
if (IS_ALIGNED(addr, 4) && IS_ALIGNED((uintptr_t)dest, 4) && IS_ALIGNED(size, 4)) {
/* A single read operation is enough when when all parameters are aligned */
return bootloader_flash_read(addr, dest, size, true) == ESP_OK;
}
const uint32_t aligned_addr = ALIGN_DOWN(addr, 4);
const uint32_t addr_offset = ALIGN_OFFSET(addr, 4);
uint32_t bytes_remaining = size;
uint8_t read_data[FLASH_BUFFER_SIZE] = {0};
/* Align the read address to 4-byte boundary and ensure read size is a multiple of 4 bytes */
uint32_t bytes = MIN(bytes_remaining + addr_offset, sizeof(read_data));
if (bootloader_flash_read(aligned_addr, read_data, ALIGN_UP(bytes, 4), true) != ESP_OK) {
return false;
}
/* Skip non-useful data which may have been read for adjusting the alignment */
uint32_t bytes_read = bytes - addr_offset;
memcpy(dest, &read_data[addr_offset], bytes_read);
bytes_remaining -= bytes_read;
/* Read remaining data from Flash in case requested size is greater than buffer size */
uint32_t offset = bytes;
while (bytes_remaining != 0) {
bytes = MIN(bytes_remaining, sizeof(read_data));
if (bootloader_flash_read(aligned_addr + offset, read_data, ALIGN_UP(bytes, 4), true) != ESP_OK) {
return false;
}
memcpy(&((uint8_t *)dest)[bytes_read], read_data, bytes);
offset += bytes;
bytes_read += bytes;
bytes_remaining -= bytes;
}
return true;
}
int flash_area_read(const struct flash_area *fa, uint32_t off, void *dst,
uint32_t len)
{
if (fa->fa_device_id != FLASH_DEVICE_INTERNAL_FLASH) {
return -1;
}
const uint32_t end_offset = off + len;
if (end_offset > fa->fa_size) {
BOOT_LOG_ERR("%s: Out of Bounds (0x%x vs 0x%x)", __func__, end_offset, fa->fa_size);
return -1;
}
bool success = aligned_flash_read(fa->fa_off + off, dst, len);
if (!success) {
BOOT_LOG_ERR("%s: Flash read failed", __func__);
return -1;
}
return 0;
}
static bool aligned_flash_write(size_t dest_addr, const void *src, size_t size)
{
#ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
bool flash_encryption_enabled = esp_flash_encryption_enabled();
#else
bool flash_encryption_enabled = false;
#endif
if (IS_ALIGNED(dest_addr, 4) && IS_ALIGNED((uintptr_t)src, 4) && IS_ALIGNED(size, 4)) {
/* A single write operation is enough when all parameters are aligned */
return bootloader_flash_write(dest_addr, (void *)src, size, flash_encryption_enabled) == ESP_OK;
}
const uint32_t aligned_addr = ALIGN_DOWN(dest_addr, 4);
const uint32_t addr_offset = ALIGN_OFFSET(dest_addr, 4);
uint32_t bytes_remaining = size;
uint8_t write_data[FLASH_BUFFER_SIZE] = {0};
/* Perform a read operation considering an offset not aligned to 4-byte boundary */
uint32_t bytes = MIN(bytes_remaining + addr_offset, sizeof(write_data));
if (bootloader_flash_read(aligned_addr, write_data, ALIGN_UP(bytes, 4), true) != ESP_OK) {
return false;
}
uint32_t bytes_written = bytes - addr_offset;
memcpy(&write_data[addr_offset], src, bytes_written);
if (bootloader_flash_write(aligned_addr, write_data, ALIGN_UP(bytes, 4), flash_encryption_enabled) != ESP_OK) {
return false;
}
bytes_remaining -= bytes_written;
/* Write remaining data to Flash if any */
uint32_t offset = bytes;
while (bytes_remaining != 0) {
bytes = MIN(bytes_remaining, sizeof(write_data));
if (bootloader_flash_read(aligned_addr + offset, write_data, ALIGN_UP(bytes, 4), true) != ESP_OK) {
return false;
}
memcpy(write_data, &((uint8_t *)src)[bytes_written], bytes);
if (bootloader_flash_write(aligned_addr + offset, write_data, ALIGN_UP(bytes, 4), flash_encryption_enabled) != ESP_OK) {
return false;
}
offset += bytes;
bytes_written += bytes;
bytes_remaining -= bytes;
}
return true;
}
int flash_area_write(const struct flash_area *fa, uint32_t off, const void *src,
uint32_t len)
{
if (fa->fa_device_id != FLASH_DEVICE_INTERNAL_FLASH) {
return -1;
}
const uint32_t end_offset = off + len;
if (end_offset > fa->fa_size) {
BOOT_LOG_ERR("%s: Out of Bounds (0x%x vs 0x%x)", __func__, end_offset, fa->fa_size);
return -1;
}
const uint32_t start_addr = fa->fa_off + off;
BOOT_LOG_DBG("%s: Addr: 0x%08x Length: %d", __func__, (int)start_addr, (int)len);
bool success = aligned_flash_write(start_addr, src, len);
if (!success) {
BOOT_LOG_ERR("%s: Flash write failed", __func__);
return -1;
}
return 0;
}
int flash_area_erase(const struct flash_area *fa, uint32_t off, uint32_t len)
{
if (fa->fa_device_id != FLASH_DEVICE_INTERNAL_FLASH) {
return -1;
}
if ((len % FLASH_SECTOR_SIZE) != 0 || (off % FLASH_SECTOR_SIZE) != 0) {
BOOT_LOG_ERR("%s: Not aligned on sector Offset: 0x%x Length: 0x%x",
__func__, (int)off, (int)len);
return -1;
}
const uint32_t start_addr = fa->fa_off + off;
BOOT_LOG_DBG("%s: Addr: 0x%08x Length: %d", __func__, (int)start_addr, (int)len);
if (bootloader_flash_erase_range(start_addr, len) != ESP_OK) {
BOOT_LOG_ERR("%s: Flash erase failed", __func__);
return -1;
}
#if VALIDATE_PROGRAM_OP
for (size_t i = 0; i < len; i++) {
uint8_t *val = (void *)(start_addr + i);
if (*val != 0xff) {
BOOT_LOG_ERR("%s: Erase at 0x%x Failed", __func__, (int)val);
assert(0);
}
}
#endif
return 0;
}
uint32_t flash_area_align(const struct flash_area *area)
{
static size_t align = 0;
if (align == 0) {
#ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
bool flash_encryption_enabled = esp_flash_encryption_enabled();
#else
bool flash_encryption_enabled = false;
#endif
if (flash_encryption_enabled) {
align = 32;
} else {
align = 4;
}
}
return align;
}
uint8_t flash_area_erased_val(const struct flash_area *area)
{
return 0xff;
}
int flash_area_get_sectors(int fa_id, uint32_t *count,
struct flash_sector *sectors)
{
const struct flash_area *fa = prv_lookup_flash_area(fa_id);
if (fa->fa_device_id != FLASH_DEVICE_INTERNAL_FLASH) {
return -1;
}
const size_t sector_size = FLASH_SECTOR_SIZE;
uint32_t total_count = 0;
for (size_t off = 0; off < fa->fa_size; off += sector_size) {
// Note: Offset here is relative to flash area, not device
sectors[total_count].fs_off = off;
sectors[total_count].fs_size = sector_size;
total_count++;
}
*count = total_count;
return 0;
}
int flash_area_sector_from_off(uint32_t off, struct flash_sector *sector)
{
sector->fs_off = (off / FLASH_SECTOR_SIZE) * FLASH_SECTOR_SIZE;
sector->fs_size = FLASH_SECTOR_SIZE;
return 0;
}
int flash_area_get_sector(const struct flash_area *fa, uint32_t off,
struct flash_sector *sector)
{
sector->fs_off = (off / FLASH_SECTOR_SIZE) * FLASH_SECTOR_SIZE;
sector->fs_size = FLASH_SECTOR_SIZE;
return 0;
}
int flash_area_id_from_multi_image_slot(int image_index, int slot)
{
BOOT_LOG_DBG("%s", __func__);
switch (slot) {
case 0:
return FLASH_AREA_IMAGE_PRIMARY(image_index);
case 1:
return FLASH_AREA_IMAGE_SECONDARY(image_index);
}
BOOT_LOG_ERR("Unexpected Request: image_index=%d, slot=%d", image_index, slot);
return -1; /* flash_area_open will fail on that */
}
int flash_area_id_from_image_slot(int slot)
{
return flash_area_id_from_multi_image_slot(0, slot);
}
int flash_area_to_sectors(int idx, int *cnt, struct flash_area *fa)
{
return -1;
}
void mcuboot_assert_handler(const char *file, int line, const char *func)
{
ets_printf("assertion failed: file \"%s\", line %d, func: %s\n", file, line, func);
abort();
}