/* * SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include "sdkconfig.h" #include "esp_err.h" #include "bootloader_flash_priv.h" #include "esp_flash_encrypt.h" #include "flash_map_backend/flash_map_backend.h" #include "sysflash/sysflash.h" #ifndef ARRAY_SIZE # define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) #endif #ifndef MIN # define MIN(a, b) (((a) < (b)) ? (a) : (b)) #endif #ifndef ALIGN_UP # define ALIGN_UP(num, align) (((num) + ((align) - 1)) & ~((align) - 1)) #endif #ifndef ALIGN_DOWN # define ALIGN_DOWN(num, align) ((num) & ~((align) - 1)) #endif #ifndef ALIGN_OFFSET # define ALIGN_OFFSET(num, align) ((num) & ((align) - 1)) #endif #ifndef IS_ALIGNED # define IS_ALIGNED(num, align) (ALIGN_OFFSET((num), (align)) == 0) #endif #define FLASH_BUFFER_SIZE 256 /* SPI Flash block size */ _Static_assert(IS_ALIGNED(FLASH_BUFFER_SIZE, 4), "Buffer size for SPI Flash operations must be 4-byte aligned."); #define BOOTLOADER_START_ADDRESS CONFIG_BOOTLOADER_OFFSET_IN_FLASH #define BOOTLOADER_SIZE CONFIG_ESP_BOOTLOADER_SIZE #define IMAGE0_PRIMARY_START_ADDRESS CONFIG_ESP_IMAGE0_PRIMARY_START_ADDRESS #define IMAGE0_SECONDARY_START_ADDRESS CONFIG_ESP_IMAGE0_SECONDARY_START_ADDRESS #define SCRATCH_OFFSET CONFIG_ESP_SCRATCH_OFFSET #if (MCUBOOT_IMAGE_NUMBER == 2) #define IMAGE1_PRIMARY_START_ADDRESS CONFIG_ESP_IMAGE1_PRIMARY_START_ADDRESS #define IMAGE1_SECONDARY_START_ADDRESS CONFIG_ESP_IMAGE1_SECONDARY_START_ADDRESS #endif #define APPLICATION_SIZE CONFIG_ESP_APPLICATION_SIZE #define SCRATCH_SIZE CONFIG_ESP_SCRATCH_SIZE extern int ets_printf(const char *fmt, ...); static const struct flash_area bootloader = { .fa_id = FLASH_AREA_BOOTLOADER, .fa_device_id = FLASH_DEVICE_INTERNAL_FLASH, .fa_off = BOOTLOADER_START_ADDRESS, .fa_size = BOOTLOADER_SIZE, }; static const struct flash_area primary_img0 = { .fa_id = FLASH_AREA_IMAGE_PRIMARY(0), .fa_device_id = FLASH_DEVICE_INTERNAL_FLASH, .fa_off = IMAGE0_PRIMARY_START_ADDRESS, .fa_size = APPLICATION_SIZE, }; static const struct flash_area secondary_img0 = { .fa_id = FLASH_AREA_IMAGE_SECONDARY(0), .fa_device_id = FLASH_DEVICE_INTERNAL_FLASH, .fa_off = IMAGE0_SECONDARY_START_ADDRESS, .fa_size = APPLICATION_SIZE, }; #if (MCUBOOT_IMAGE_NUMBER == 2) static const struct flash_area primary_img1 = { .fa_id = FLASH_AREA_IMAGE_PRIMARY(1), .fa_device_id = FLASH_DEVICE_INTERNAL_FLASH, .fa_off = IMAGE1_PRIMARY_START_ADDRESS, .fa_size = APPLICATION_SIZE, }; static const struct flash_area secondary_img1 = { .fa_id = FLASH_AREA_IMAGE_SECONDARY(1), .fa_device_id = FLASH_DEVICE_INTERNAL_FLASH, .fa_off = IMAGE1_SECONDARY_START_ADDRESS, .fa_size = APPLICATION_SIZE, }; #endif static const struct flash_area scratch_img0 = { .fa_id = FLASH_AREA_IMAGE_SCRATCH, .fa_device_id = FLASH_DEVICE_INTERNAL_FLASH, .fa_off = SCRATCH_OFFSET, .fa_size = SCRATCH_SIZE, }; static const struct flash_area *s_flash_areas[] = { &bootloader, &primary_img0, &secondary_img0, #if (MCUBOOT_IMAGE_NUMBER == 2) &primary_img1, &secondary_img1, #endif &scratch_img0, }; static const struct flash_area *prv_lookup_flash_area(uint8_t id) { for (size_t i = 0; i < ARRAY_SIZE(s_flash_areas); i++) { const struct flash_area *area = s_flash_areas[i]; if (id == area->fa_id) { return area; } } return NULL; } int flash_area_open(uint8_t id, const struct flash_area **area_outp) { BOOT_LOG_DBG("%s: ID=%d", __func__, (int)id); const struct flash_area *area = prv_lookup_flash_area(id); *area_outp = area; return area != NULL ? 0 : -1; } void flash_area_close(const struct flash_area *area) { } static bool aligned_flash_read(uintptr_t addr, void *dest, size_t size) { if (IS_ALIGNED(addr, 4) && IS_ALIGNED((uintptr_t)dest, 4) && IS_ALIGNED(size, 4)) { /* A single read operation is enough when when all parameters are aligned */ return bootloader_flash_read(addr, dest, size, true) == ESP_OK; } const uint32_t aligned_addr = ALIGN_DOWN(addr, 4); const uint32_t addr_offset = ALIGN_OFFSET(addr, 4); uint32_t bytes_remaining = size; uint8_t read_data[FLASH_BUFFER_SIZE] = {0}; /* Align the read address to 4-byte boundary and ensure read size is a multiple of 4 bytes */ uint32_t bytes = MIN(bytes_remaining + addr_offset, sizeof(read_data)); if (bootloader_flash_read(aligned_addr, read_data, ALIGN_UP(bytes, 4), true) != ESP_OK) { return false; } /* Skip non-useful data which may have been read for adjusting the alignment */ uint32_t bytes_read = bytes - addr_offset; memcpy(dest, &read_data[addr_offset], bytes_read); bytes_remaining -= bytes_read; /* Read remaining data from Flash in case requested size is greater than buffer size */ uint32_t offset = bytes; while (bytes_remaining != 0) { bytes = MIN(bytes_remaining, sizeof(read_data)); if (bootloader_flash_read(aligned_addr + offset, read_data, ALIGN_UP(bytes, 4), true) != ESP_OK) { return false; } memcpy(&((uint8_t *)dest)[bytes_read], read_data, bytes); offset += bytes; bytes_read += bytes; bytes_remaining -= bytes; } return true; } int flash_area_read(const struct flash_area *fa, uint32_t off, void *dst, uint32_t len) { if (fa->fa_device_id != FLASH_DEVICE_INTERNAL_FLASH) { return -1; } const uint32_t end_offset = off + len; if (end_offset > fa->fa_size) { BOOT_LOG_ERR("%s: Out of Bounds (0x%x vs 0x%x)", __func__, end_offset, fa->fa_size); return -1; } bool success = aligned_flash_read(fa->fa_off + off, dst, len); if (!success) { BOOT_LOG_ERR("%s: Flash read failed", __func__); return -1; } return 0; } static bool aligned_flash_write(size_t dest_addr, const void *src, size_t size) { #ifdef CONFIG_SECURE_FLASH_ENC_ENABLED bool flash_encryption_enabled = esp_flash_encryption_enabled(); #else bool flash_encryption_enabled = false; #endif if (IS_ALIGNED(dest_addr, 4) && IS_ALIGNED((uintptr_t)src, 4) && IS_ALIGNED(size, 4)) { /* A single write operation is enough when all parameters are aligned */ return bootloader_flash_write(dest_addr, (void *)src, size, flash_encryption_enabled) == ESP_OK; } const uint32_t aligned_addr = ALIGN_DOWN(dest_addr, 4); const uint32_t addr_offset = ALIGN_OFFSET(dest_addr, 4); uint32_t bytes_remaining = size; uint8_t write_data[FLASH_BUFFER_SIZE] = {0}; /* Perform a read operation considering an offset not aligned to 4-byte boundary */ uint32_t bytes = MIN(bytes_remaining + addr_offset, sizeof(write_data)); if (bootloader_flash_read(aligned_addr, write_data, ALIGN_UP(bytes, 4), true) != ESP_OK) { return false; } uint32_t bytes_written = bytes - addr_offset; memcpy(&write_data[addr_offset], src, bytes_written); if (bootloader_flash_write(aligned_addr, write_data, ALIGN_UP(bytes, 4), flash_encryption_enabled) != ESP_OK) { return false; } bytes_remaining -= bytes_written; /* Write remaining data to Flash if any */ uint32_t offset = bytes; while (bytes_remaining != 0) { bytes = MIN(bytes_remaining, sizeof(write_data)); if (bootloader_flash_read(aligned_addr + offset, write_data, ALIGN_UP(bytes, 4), true) != ESP_OK) { return false; } memcpy(write_data, &((uint8_t *)src)[bytes_written], bytes); if (bootloader_flash_write(aligned_addr + offset, write_data, ALIGN_UP(bytes, 4), flash_encryption_enabled) != ESP_OK) { return false; } offset += bytes; bytes_written += bytes; bytes_remaining -= bytes; } return true; } int flash_area_write(const struct flash_area *fa, uint32_t off, const void *src, uint32_t len) { if (fa->fa_device_id != FLASH_DEVICE_INTERNAL_FLASH) { return -1; } const uint32_t end_offset = off + len; if (end_offset > fa->fa_size) { BOOT_LOG_ERR("%s: Out of Bounds (0x%x vs 0x%x)", __func__, end_offset, fa->fa_size); return -1; } const uint32_t start_addr = fa->fa_off + off; BOOT_LOG_DBG("%s: Addr: 0x%08x Length: %d", __func__, (int)start_addr, (int)len); bool success = aligned_flash_write(start_addr, src, len); if (!success) { BOOT_LOG_ERR("%s: Flash write failed", __func__); return -1; } return 0; } int flash_area_erase(const struct flash_area *fa, uint32_t off, uint32_t len) { if (fa->fa_device_id != FLASH_DEVICE_INTERNAL_FLASH) { return -1; } if ((len % FLASH_SECTOR_SIZE) != 0 || (off % FLASH_SECTOR_SIZE) != 0) { BOOT_LOG_ERR("%s: Not aligned on sector Offset: 0x%x Length: 0x%x", __func__, (int)off, (int)len); return -1; } const uint32_t start_addr = fa->fa_off + off; BOOT_LOG_DBG("%s: Addr: 0x%08x Length: %d", __func__, (int)start_addr, (int)len); if (bootloader_flash_erase_range(start_addr, len) != ESP_OK) { BOOT_LOG_ERR("%s: Flash erase failed", __func__); return -1; } #if VALIDATE_PROGRAM_OP for (size_t i = 0; i < len; i++) { uint8_t *val = (void *)(start_addr + i); if (*val != 0xff) { BOOT_LOG_ERR("%s: Erase at 0x%x Failed", __func__, (int)val); assert(0); } } #endif return 0; } uint32_t flash_area_align(const struct flash_area *area) { static size_t align = 0; if (align == 0) { #ifdef CONFIG_SECURE_FLASH_ENC_ENABLED bool flash_encryption_enabled = esp_flash_encryption_enabled(); #else bool flash_encryption_enabled = false; #endif if (flash_encryption_enabled) { align = 32; } else { align = 4; } } return align; } uint8_t flash_area_erased_val(const struct flash_area *area) { return 0xff; } int flash_area_get_sectors(int fa_id, uint32_t *count, struct flash_sector *sectors) { const struct flash_area *fa = prv_lookup_flash_area(fa_id); if (fa->fa_device_id != FLASH_DEVICE_INTERNAL_FLASH) { return -1; } const size_t sector_size = FLASH_SECTOR_SIZE; uint32_t total_count = 0; for (size_t off = 0; off < fa->fa_size; off += sector_size) { // Note: Offset here is relative to flash area, not device sectors[total_count].fs_off = off; sectors[total_count].fs_size = sector_size; total_count++; } *count = total_count; return 0; } int flash_area_sector_from_off(uint32_t off, struct flash_sector *sector) { sector->fs_off = (off / FLASH_SECTOR_SIZE) * FLASH_SECTOR_SIZE; sector->fs_size = FLASH_SECTOR_SIZE; return 0; } int flash_area_get_sector(const struct flash_area *fa, uint32_t off, struct flash_sector *sector) { sector->fs_off = (off / FLASH_SECTOR_SIZE) * FLASH_SECTOR_SIZE; sector->fs_size = FLASH_SECTOR_SIZE; return 0; } int flash_area_id_from_multi_image_slot(int image_index, int slot) { BOOT_LOG_DBG("%s", __func__); switch (slot) { case 0: return FLASH_AREA_IMAGE_PRIMARY(image_index); case 1: return FLASH_AREA_IMAGE_SECONDARY(image_index); } BOOT_LOG_ERR("Unexpected Request: image_index=%d, slot=%d", image_index, slot); return -1; /* flash_area_open will fail on that */ } int flash_area_id_from_image_slot(int slot) { return flash_area_id_from_multi_image_slot(0, slot); } int flash_area_to_sectors(int idx, int *cnt, struct flash_area *fa) { return -1; } void mcuboot_assert_handler(const char *file, int line, const char *func) { ets_printf("assertion failed: file \"%s\", line %d, func: %s\n", file, line, func); abort(); }