sim: Return exit status from sim run

Instead of just printing a message, return an exit status so that
scripts running the sim can more easily tell if the tests passed.

Jira: MCUB-45
This commit is contained in:
David Brown 2017-03-29 12:28:47 -06:00
parent 274f7874db
commit 361be7ade7
1 changed files with 165 additions and 111 deletions

View File

@ -12,6 +12,7 @@ use docopt::Docopt;
use rand::{Rng, SeedableRng, XorShiftRng};
use rustc_serialize::{Decodable, Decoder};
use std::mem;
use std::process;
use std::slice;
mod area;
@ -79,128 +80,181 @@ fn main() {
return;
}
let mut status = RunStatus::new();
let align = args.flag_align.map(|x| x.0).unwrap_or(1);
let (mut flash, areadesc) = match args.flag_device {
None => panic!("Missing mandatory argument"),
Some(DeviceName::Stm32f4) => {
// STM style flash. Large sectors, with a large scratch area.
let flash = Flash::new(vec![16 * 1024, 16 * 1024, 16 * 1024, 16 * 1024,
64 * 1024,
128 * 1024, 128 * 1024, 128 * 1024],
align as usize);
let mut areadesc = AreaDesc::new(&flash);
areadesc.add_image(0x020000, 0x020000, FlashId::Image0);
areadesc.add_image(0x040000, 0x020000, FlashId::Image1);
areadesc.add_image(0x060000, 0x020000, FlashId::ImageScratch);
(flash, areadesc)
}
Some(DeviceName::K64f) => {
// NXP style flash. Small sectors, one small sector for scratch.
let flash = Flash::new(vec![4096; 128], align as usize);
let mut areadesc = AreaDesc::new(&flash);
areadesc.add_image(0x020000, 0x020000, FlashId::Image0);
areadesc.add_image(0x040000, 0x020000, FlashId::Image1);
areadesc.add_image(0x060000, 0x001000, FlashId::ImageScratch);
(flash, areadesc)
}
Some(DeviceName::K64fBig) => {
// Simulating an STM style flash on top of an NXP style flash. Underlying flash device
// uses small sectors, but we tell the bootloader they are large.
let flash = Flash::new(vec![4096; 128], align as usize);
let mut areadesc = AreaDesc::new(&flash);
areadesc.add_simple_image(0x020000, 0x020000, FlashId::Image0);
areadesc.add_simple_image(0x040000, 0x020000, FlashId::Image1);
areadesc.add_simple_image(0x060000, 0x020000, FlashId::ImageScratch);
(flash, areadesc)
}
Some(DeviceName::Nrf52840) => {
// Simulating the flash on the nrf52840 with partitions set up so that the scratch size
// does not divide into the image size.
let flash = Flash::new(vec![4096; 128], align as usize);
let mut areadesc = AreaDesc::new(&flash);
areadesc.add_image(0x008000, 0x034000, FlashId::Image0);
areadesc.add_image(0x03c000, 0x034000, FlashId::Image1);
areadesc.add_image(0x070000, 0x00d000, FlashId::ImageScratch);
(flash, areadesc)
}
let device = match args.flag_device {
None => panic!("Missing mandatory device argument"),
Some(dev) => dev,
};
let (slot0_base, slot0_len) = areadesc.find(FlashId::Image0);
let (slot1_base, slot1_len) = areadesc.find(FlashId::Image1);
let (scratch_base, _) = areadesc.find(FlashId::ImageScratch);
status.run_single(device, align);
// Code below assumes that the slots are consecutive.
assert_eq!(slot1_base, slot0_base + slot0_len);
assert_eq!(scratch_base, slot1_base + slot1_len);
if status.failures > 0 {
warn!("{} Tests ran with {} failures", status.failures + status.passes, status.failures);
process::exit(1);
} else {
warn!("{} Tests ran successfully", status.passes);
process::exit(0);
}
}
// println!("Areas: {:#?}", areadesc.get_c());
struct RunStatus {
failures: usize,
passes: usize,
}
// Install the boot trailer signature, so that the code will start an upgrade.
// TODO: This must be a multiple of flash alignment, add support for an image that is smaller,
// and just gets padded.
let primary = install_image(&mut flash, slot0_base, 32784);
// Install an upgrade image.
let upgrade = install_image(&mut flash, slot1_base, 41928);
// Set an alignment, and position the magic value.
c::set_sim_flash_align(align);
let trailer_size = c::boot_trailer_sz();
// Mark the upgrade as ready to install. (This looks like it might be a bug in the code,
// however.)
mark_upgrade(&mut flash, scratch_base - trailer_size as usize);
let (fl2, total_count) = try_upgrade(&flash, &areadesc, None);
info!("First boot, count={}", total_count);
assert!(verify_image(&fl2, slot0_base, &upgrade));
let mut bad = 0;
// Let's try an image halfway through.
for i in 1 .. total_count {
info!("Try interruption at {}", i);
let (fl3, total_count) = try_upgrade(&flash, &areadesc, Some(i));
info!("Second boot, count={}", total_count);
if !verify_image(&fl3, slot0_base, &upgrade) {
warn!("FAIL at step {} of {}", i, total_count);
bad += 1;
}
if !verify_image(&fl3, slot1_base, &primary) {
warn!("Slot 1 FAIL at step {} of {}", i, total_count);
bad += 1;
impl RunStatus {
fn new() -> RunStatus {
RunStatus {
failures: 0,
passes: 0,
}
}
error!("{} out of {} failed {:.2}%",
bad, total_count,
bad as f32 * 100.0 / total_count as f32);
for count in 2 .. 5 {
info!("Try revert: {}", count);
let fl2 = try_revert(&flash, &areadesc, count);
assert!(verify_image(&fl2, slot0_base, &primary));
fn run_single(&mut self, device: DeviceName, align: u8) {
let mut failed = false;
let (mut flash, areadesc) = match device {
DeviceName::Stm32f4 => {
// STM style flash. Large sectors, with a large scratch area.
let flash = Flash::new(vec![16 * 1024, 16 * 1024, 16 * 1024, 16 * 1024,
64 * 1024,
128 * 1024, 128 * 1024, 128 * 1024],
align as usize);
let mut areadesc = AreaDesc::new(&flash);
areadesc.add_image(0x020000, 0x020000, FlashId::Image0);
areadesc.add_image(0x040000, 0x020000, FlashId::Image1);
areadesc.add_image(0x060000, 0x020000, FlashId::ImageScratch);
(flash, areadesc)
}
DeviceName::K64f => {
// NXP style flash. Small sectors, one small sector for scratch.
let flash = Flash::new(vec![4096; 128], align as usize);
let mut areadesc = AreaDesc::new(&flash);
areadesc.add_image(0x020000, 0x020000, FlashId::Image0);
areadesc.add_image(0x040000, 0x020000, FlashId::Image1);
areadesc.add_image(0x060000, 0x001000, FlashId::ImageScratch);
(flash, areadesc)
}
DeviceName::K64fBig => {
// Simulating an STM style flash on top of an NXP style flash. Underlying flash device
// uses small sectors, but we tell the bootloader they are large.
let flash = Flash::new(vec![4096; 128], align as usize);
let mut areadesc = AreaDesc::new(&flash);
areadesc.add_simple_image(0x020000, 0x020000, FlashId::Image0);
areadesc.add_simple_image(0x040000, 0x020000, FlashId::Image1);
areadesc.add_simple_image(0x060000, 0x020000, FlashId::ImageScratch);
(flash, areadesc)
}
DeviceName::Nrf52840 => {
// Simulating the flash on the nrf52840 with partitions set up so that the scratch size
// does not divide into the image size.
let flash = Flash::new(vec![4096; 128], align as usize);
let mut areadesc = AreaDesc::new(&flash);
areadesc.add_image(0x008000, 0x034000, FlashId::Image0);
areadesc.add_image(0x03c000, 0x034000, FlashId::Image1);
areadesc.add_image(0x070000, 0x00d000, FlashId::ImageScratch);
(flash, areadesc)
}
};
let (slot0_base, slot0_len) = areadesc.find(FlashId::Image0);
let (slot1_base, slot1_len) = areadesc.find(FlashId::Image1);
let (scratch_base, _) = areadesc.find(FlashId::ImageScratch);
// Code below assumes that the slots are consecutive.
assert_eq!(slot1_base, slot0_base + slot0_len);
assert_eq!(scratch_base, slot1_base + slot1_len);
// println!("Areas: {:#?}", areadesc.get_c());
// Install the boot trailer signature, so that the code will start an upgrade.
// TODO: This must be a multiple of flash alignment, add support for an image that is smaller,
// and just gets padded.
let primary = install_image(&mut flash, slot0_base, 32784);
// Install an upgrade image.
let upgrade = install_image(&mut flash, slot1_base, 41928);
// Set an alignment, and position the magic value.
c::set_sim_flash_align(align);
let trailer_size = c::boot_trailer_sz();
// Mark the upgrade as ready to install. (This looks like it might be a bug in the code,
// however.)
mark_upgrade(&mut flash, scratch_base - trailer_size as usize);
let (fl2, total_count) = try_upgrade(&flash, &areadesc, None);
info!("First boot, count={}", total_count);
if !verify_image(&fl2, slot0_base, &upgrade) {
error!("Image mismatch after first boot");
// This isn't really recoverable, and more tests aren't likely to reveal much.
self.failures += 1;
return;
}
let mut bad = 0;
// Let's try an image halfway through.
for i in 1 .. total_count {
info!("Try interruption at {}", i);
let (fl3, total_count) = try_upgrade(&flash, &areadesc, Some(i));
info!("Second boot, count={}", total_count);
if !verify_image(&fl3, slot0_base, &upgrade) {
warn!("FAIL at step {} of {}", i, total_count);
bad += 1;
}
if !verify_image(&fl3, slot1_base, &primary) {
warn!("Slot 1 FAIL at step {} of {}", i, total_count);
bad += 1;
}
}
error!("{} out of {} failed {:.2}%",
bad, total_count,
bad as f32 * 100.0 / total_count as f32);
if bad > 0 {
failed = true;
}
for count in 2 .. 5 {
info!("Try revert: {}", count);
let fl2 = try_revert(&flash, &areadesc, count);
if !verify_image(&fl2, slot0_base, &primary) {
warn!("Revert failure on count {}", count);
failed = true;
}
}
info!("Try norevert");
let fl2 = try_norevert(&flash, &areadesc);
if !verify_image(&fl2, slot0_base, &upgrade) {
warn!("No revert failed");
failed = true;
}
/*
// show_flash(&flash);
println!("First boot for upgrade");
// c::set_flash_counter(570);
c::boot_go(&mut flash, &areadesc);
// println!("{} flash ops", c::get_flash_counter());
verify_image(&flash, slot0_base, &upgrade);
println!("\n------------------\nSecond boot");
c::boot_go(&mut flash, &areadesc);
*/
if failed {
self.failures += 1;
} else {
self.passes += 1;
}
}
info!("Try norevert");
let fl2 = try_norevert(&flash, &areadesc);
assert!(verify_image(&fl2, slot0_base, &upgrade));
/*
// show_flash(&flash);
println!("First boot for upgrade");
// c::set_flash_counter(570);
c::boot_go(&mut flash, &areadesc);
// println!("{} flash ops", c::get_flash_counter());
verify_image(&flash, slot0_base, &upgrade);
println!("\n------------------\nSecond boot");
c::boot_go(&mut flash, &areadesc);
*/
}
/// Test a boot, optionally stopping after 'n' flash options. Returns a count of the number of