mcuboot/boot/espressif/main.c

299 lines
8.9 KiB
C
Raw Normal View History

/*
* SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <bootutil/bootutil.h>
#include <bootutil/bootutil_log.h>
#include <bootutil/fault_injection_hardening.h>
#include <bootutil/image.h>
#include "bootloader_init.h"
#include "bootloader_utility.h"
#include "bootloader_random.h"
#include "bootloader_soc.h"
#include "esp_assert.h"
#ifdef CONFIG_MCUBOOT_SERIAL
#include "boot_serial/boot_serial.h"
#include "serial_adapter/serial_adapter.h"
const struct boot_uart_funcs boot_funcs = {
.read = console_read,
.write = console_write
};
#endif
#if defined(CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH) || defined(CONFIG_SECURE_BOOT)
#include "esp_efuse.h"
#endif
#ifdef CONFIG_SECURE_BOOT
#include "esp_secure_boot.h"
#endif
#ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
#include "esp_flash_encrypt.h"
#endif
#include "esp_loader.h"
#include "os/os_malloc.h"
#define IMAGE_INDEX_0 0
#define IMAGE_INDEX_1 1
#define PRIMARY_SLOT 0
#define SECONDARY_SLOT 1
#ifdef CONFIG_SECURE_BOOT
extern esp_err_t check_and_generate_secure_boot_keys(void);
#endif
void do_boot(struct boot_rsp *rsp)
{
BOOT_LOG_INF("br_image_off = 0x%x", rsp->br_image_off);
BOOT_LOG_INF("ih_hdr_size = 0x%x", rsp->br_hdr->ih_hdr_size);
int slot = (rsp->br_image_off == CONFIG_ESP_IMAGE0_PRIMARY_START_ADDRESS) ? PRIMARY_SLOT : SECONDARY_SLOT;
start_cpu0_image(IMAGE_INDEX_0, slot, rsp->br_hdr->ih_hdr_size);
}
#ifdef CONFIG_ESP_MULTI_PROCESSOR_BOOT
int read_image_header(uint32_t img_index, uint32_t slot, struct image_header *img_header)
{
const struct flash_area *fap;
int area_id;
int rc = 0;
area_id = flash_area_id_from_multi_image_slot(img_index, slot);
rc = flash_area_open(area_id, &fap);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
if (flash_area_read(fap, 0, img_header, sizeof(struct image_header))) {
rc = BOOT_EFLASH;
goto done;
}
BOOT_LOG_INF("Image offset = 0x%x", fap->fa_off);
BOOT_LOG_INF("Image header size = 0x%x", img_header->ih_hdr_size);
done:
flash_area_close(fap);
return rc;
}
void do_boot_appcpu(uint32_t img_index, uint32_t slot)
{
struct image_header img_header;
if (read_image_header(img_index, slot, &img_header) != 0) {
FIH_PANIC;
}
start_cpu1_image(img_index, slot, img_header.ih_hdr_size);
}
#endif
int main()
{
if (bootloader_init() != ESP_OK) {
FIH_PANIC;
}
/* Rough steps for a first boot when Secure Boot and/or Flash Encryption are still disabled on device:
* Secure Boot:
* 1) Calculate the SHA-256 hash digest of the public key and write to EFUSE.
* 2) Validate the application images and prepare the booting process.
* 3) Burn EFUSE to enable Secure Boot V2 (ABS_DONE_0).
* Flash Encryption:
* 4) Generate Flash Encryption key and write to EFUSE.
* 5) Encrypt flash in-place including bootloader, image primary/secondary slot and scratch.
* 6) Burn EFUSE to enable Flash Encryption.
* 7) Reset system to ensure Flash Encryption cache resets properly.
*/
#ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
BOOT_LOG_WRN("eFuse virtual mode is enabled. If Secure boot or Flash encryption is enabled then it does not provide any security. FOR TESTING ONLY!");
esp_efuse_init_virtual_mode_in_flash(CONFIG_EFUSE_VIRTUAL_OFFSET, CONFIG_EFUSE_VIRTUAL_SIZE);
#endif
#if defined(CONFIG_SECURE_BOOT) || defined(CONFIG_SECURE_FLASH_ENC_ENABLED)
esp_err_t err;
#endif
#ifdef CONFIG_SECURE_BOOT_FLASH_ENC_KEYS_BURN_TOGETHER
if (esp_secure_boot_enabled() ^ esp_flash_encrypt_initialized_once()) {
BOOT_LOG_ERR("Secure Boot and Flash Encryption cannot be enabled separately, only together (their keys go into one eFuse key block)");
FIH_PANIC;
}
if (!esp_secure_boot_enabled() || !esp_flash_encryption_enabled()) {
esp_efuse_batch_write_begin();
}
#endif // CONFIG_SECURE_BOOT_FLASH_ENC_KEYS_BURN_TOGETHER
#ifdef CONFIG_SECURE_BOOT
/* Steps 1 (see above for full description):
* 1) Compute digest of the public key.
*/
BOOT_LOG_INF("enabling secure boot v2...");
bool sb_hw_enabled = esp_secure_boot_enabled();
if (sb_hw_enabled) {
BOOT_LOG_INF("secure boot v2 is already enabled, continuing..");
} else {
esp_efuse_batch_write_begin(); /* Batch all efuse writes at the end of this function */
err = check_and_generate_secure_boot_keys();
if (err != ESP_OK) {
esp_efuse_batch_write_cancel();
FIH_PANIC;
}
}
#endif
os_heap_init();
struct boot_rsp rsp;
FIH_DECLARE(fih_rc, FIH_FAILURE);
#ifdef CONFIG_MCUBOOT_SERIAL
boot_console_init();
if (boot_serial_detect_pin()) {
BOOT_LOG_INF("Enter the serial recovery mode");
boot_serial_start(&boot_funcs);
}
#endif
/* Step 2 (see above for full description):
* 2) MCUboot validates the application images and prepares the booting process.
*/
/* MCUboot's boot_go validates and checks all images for update and returns
* the load information for booting the main image
*/
FIH_CALL(boot_go, fih_rc, &rsp);
if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
BOOT_LOG_ERR("Unable to find bootable image");
#ifdef CONFIG_SECURE_BOOT
esp_efuse_batch_write_cancel();
#endif
FIH_PANIC;
}
#ifdef CONFIG_SECURE_BOOT
/* Step 3 (see above for full description):
* 3) Burn EFUSE to enable Secure Boot V2.
*/
if (!sb_hw_enabled) {
BOOT_LOG_INF("blowing secure boot efuse...");
err = esp_secure_boot_enable_secure_features();
if (err != ESP_OK) {
esp_efuse_batch_write_cancel();
FIH_PANIC;
}
err = esp_efuse_batch_write_commit();
if (err != ESP_OK) {
BOOT_LOG_ERR("Error programming security eFuses (err=0x%x).", err);
FIH_PANIC;
}
#ifdef CONFIG_SECURE_BOOT_ENABLE_AGGRESSIVE_KEY_REVOKE
assert(esp_efuse_read_field_bit(ESP_EFUSE_SECURE_BOOT_AGGRESSIVE_REVOKE));
#endif
#ifndef CONFIG_SECURE_BOOT_FLASH_ENC_KEYS_BURN_TOGETHER
assert(esp_secure_boot_enabled());
BOOT_LOG_INF("Secure boot permanently enabled");
#endif
}
#endif
#ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
/* Step 4, 5 & 6 (see above for full description):
* 4) Generate Flash Encryption key and write to EFUSE.
* 5) Encrypt flash in-place including bootloader, image primary/secondary slot and scratch.
* 6) Burn EFUSE to enable flash encryption
*/
BOOT_LOG_INF("Checking flash encryption...");
bool flash_encryption_enabled = esp_flash_encrypt_state();
if (!flash_encryption_enabled) {
#ifdef CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED
BOOT_LOG_ERR("flash encryption is not enabled, and SECURE_FLASH_REQUIRE_ALREADY_ENABLED is set, refusing to boot.");
FIH_PANIC;
#endif // CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED
if (esp_flash_encrypt_is_write_protected(true)) {
FIH_PANIC;
}
err = esp_flash_encrypt_init();
if (err != ESP_OK) {
BOOT_LOG_ERR("Initialization of Flash Encryption key failed (%d)", err);
FIH_PANIC;
}
}
if (!flash_encryption_enabled) {
err = esp_flash_encrypt_contents();
if (err != ESP_OK) {
BOOT_LOG_ERR("Encryption flash contents failed (%d)", err);
FIH_PANIC;
}
err = esp_flash_encrypt_enable();
if (err != ESP_OK) {
BOOT_LOG_ERR("Enabling of Flash encryption failed (%d)", err);
FIH_PANIC;
}
}
#ifdef CONFIG_SECURE_BOOT_FLASH_ENC_KEYS_BURN_TOGETHER
if (!esp_secure_boot_enabled() || !flash_encryption_enabled) {
err = esp_efuse_batch_write_commit();
if (err != ESP_OK) {
BOOT_LOG_ERR("Error programming eFuses (err=0x%x).", err);
FIH_PANIC;
}
assert(esp_secure_boot_enabled());
BOOT_LOG_INF("Secure boot permanently enabled");
}
#endif // CONFIG_SECURE_BOOT_FLASH_ENC_KEYS_BURN_TOGETHER
/* Step 7 (see above for full description):
* 7) Reset system to ensure flash encryption cache resets properly.
*/
if (!flash_encryption_enabled && esp_flash_encryption_enabled()) {
BOOT_LOG_INF("Resetting with flash encryption enabled...");
bootloader_reset();
}
#endif
BOOT_LOG_INF("Disabling RNG early entropy source...");
bootloader_random_disable();
/* Disable glitch reset after all the security checks are completed.
* Glitch detection can be falsely triggered by EMI interference (high RF TX power, etc)
* and to avoid such false alarms, disable it.
*/
bootloader_ana_clock_glitch_reset_config(false);
#ifdef CONFIG_ESP_MULTI_PROCESSOR_BOOT
/* Multi image independent boot
* Boot on the second processor happens before the image0 boot
*/
do_boot_appcpu(IMAGE_INDEX_1, PRIMARY_SLOT);
#endif
do_boot(&rsp);
while(1);
}