STM32CubeF7/Projects/STM32F769I-Discovery/Examples/ADC/ADC_TemperatureSensor/Src/main.c

387 lines
12 KiB
C

/**
******************************************************************************
* @file ADC/ADC_TemperatureSensor/Src/main.c
* @author MCD Application Team
* @brief This example describes how to use the Temperature Sensor to
* calculate the junction temperature of the device.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F7xx_HAL_Examples
* @{
*/
/** @addtogroup ADC_TemperatureSensor
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define TEMP_REFRESH_PERIOD 1000 /* Internal temperature refresh period */
#define MAX_CONVERTED_VALUE 4095 /* Max converted value */
#define AMBIENT_TEMP 25 /* Ambient Temperature */
#define VSENS_AT_AMBIENT_TEMP 760 /* VSENSE value (mv) at ambient temperature */
#define AVG_SLOPE 25 /* Avg_Solpe multiply by 10 */
#define VREF 3300
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* ADC handler declaration */
ADC_HandleTypeDef AdcHandle;
/* Variable used to get converted value */
__IO int32_t ConvertedValue = 0;
int32_t JTemp = 0x0;
/* Private function prototypes -----------------------------------------------*/
static void MPU_Config(void);
void SystemClock_Config(void);
static void LCD_Config(void);
static void ADC_Config(void);
static void Error_Handler(void);
static void CPU_CACHE_Enable(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program.
* @param None
* @retval None
*/
int main(void)
{
char desc[50];
/* Configure the MPU attributes */
MPU_Config();
/* Enable the CPU Cache */
CPU_CACHE_Enable();
/* STM32F7xx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure the system clock to 200 MHz */
SystemClock_Config();
/* Configure LED1 and LED2 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED2);
/*##-1- Configure the LCD peripheral #########################################*/
LCD_Config();
/*##-2- Configure the ADC peripheral #########################################*/
ADC_Config();
/*##-3- Start the conversion process #######################################*/
HAL_ADC_Start_DMA(&AdcHandle, (uint32_t*)&ConvertedValue, 1);
/* Infinite loop */
while (1)
{
/* Insert a delay define on TEMP_REFRESH_PERIOD */
HAL_Delay(TEMP_REFRESH_PERIOD);
/* Compute the Junction Temperature value */
JTemp = ((((ConvertedValue * VREF)/MAX_CONVERTED_VALUE) - VSENS_AT_AMBIENT_TEMP) * 10 / AVG_SLOPE) + AMBIENT_TEMP;
/* Display the Temperature Value on the LCD */
sprintf(desc, "Internal Temperature is %ld degree C", JTemp);
BSP_LCD_DisplayStringAt(0, BSP_LCD_GetYSize()/2 + 45, (uint8_t *)desc, CENTER_MODE);
BSP_LCD_ClearStringLine(30);
/* Toggle LED2 */
BSP_LED_Toggle(LED2);
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 200000000
* HCLK(Hz) = 200000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 25000000
* PLL_M = 25
* PLL_N = 400
* PLL_P = 2
* PLL_Q = 9
* PLL_R = 7
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 7
* @param None
* @retval None
*/
void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
HAL_StatusTypeDef ret = HAL_OK;
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 400;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 9;
RCC_OscInitStruct.PLL.PLLR = 7;
ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Activate the OverDrive to reach the 216 MHz Frequency */
ret = HAL_PWREx_EnableOverDrive();
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7);
if(ret != HAL_OK)
{
while(1) { ; }
}
}
/**
* @brief Configure the LCD for display.
* @param None
* @retval None
*/
static void LCD_Config(void)
{
uint32_t lcd_status = LCD_OK;
/* Initialize the LCD */
lcd_status = BSP_LCD_Init();
while(lcd_status != LCD_OK);
BSP_LCD_LayerDefaultInit(0, LCD_FB_START_ADDRESS);
/* Clear the LCD */
BSP_LCD_Clear(LCD_COLOR_WHITE);
/* Set LCD Example description */
BSP_LCD_SetTextColor(LCD_COLOR_DARKBLUE);
BSP_LCD_SetFont(&Font12);
BSP_LCD_DisplayStringAt(0, BSP_LCD_GetYSize()- 20, (uint8_t *)"Copyright (c) STMicroelectronics 2016", CENTER_MODE);
BSP_LCD_SetTextColor(LCD_COLOR_BLUE);
BSP_LCD_FillRect(0, 0, BSP_LCD_GetXSize(), 120);
BSP_LCD_SetTextColor(LCD_COLOR_WHITE);
BSP_LCD_SetBackColor(LCD_COLOR_BLUE);
BSP_LCD_SetFont(&Font24);
BSP_LCD_DisplayStringAt(0, 10, (uint8_t *)"ADC_TemperatureSensor", CENTER_MODE);
BSP_LCD_SetFont(&Font16);
BSP_LCD_DisplayStringAt(0, 60, (uint8_t *)"This example shows how to measure the Junction", CENTER_MODE);
BSP_LCD_DisplayStringAt(0, 75, (uint8_t *)"Temperature of the device via an Internal", CENTER_MODE);
BSP_LCD_DisplayStringAt(0, 90, (uint8_t *)"Sensor and display the Value on the LCD", CENTER_MODE);
BSP_LCD_SetTextColor(LCD_COLOR_BLACK);
BSP_LCD_SetBackColor(LCD_COLOR_WHITE);
BSP_LCD_SetFont(&Font24);
}
/**
* @brief Configure the ADC.
* @param None
* @retval None
*/
static void ADC_Config(void)
{
ADC_ChannelConfTypeDef sConfig;
/* Configure the ADC peripheral */
AdcHandle.Instance = ADC1;
AdcHandle.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV4;
AdcHandle.Init.Resolution = ADC_RESOLUTION_12B;
AdcHandle.Init.ScanConvMode = DISABLE; /* Sequencer disabled (ADC conversion on only 1 channel: channel set on rank 1) */
AdcHandle.Init.ContinuousConvMode = ENABLE; /* Continuous mode enabled to have continuous conversion */
AdcHandle.Init.DiscontinuousConvMode = DISABLE; /* Parameter discarded because sequencer is disabled */
AdcHandle.Init.NbrOfDiscConversion = 0;
AdcHandle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; /* Conversion start not triggered by an external event */
AdcHandle.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
AdcHandle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
AdcHandle.Init.NbrOfConversion = 1;
AdcHandle.Init.DMAContinuousRequests = ENABLE;
AdcHandle.Init.EOCSelection = DISABLE;
if (HAL_ADC_Init(&AdcHandle) != HAL_OK)
{
/* ADC initialization Error */
Error_Handler();
}
/* Configure ADC Temperature Sensor Channel */
sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_56CYCLES;
sConfig.Offset = 0;
if (HAL_ADC_ConfigChannel(&AdcHandle, &sConfig) != HAL_OK)
{
/* Channel Configuration Error */
Error_Handler();
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
while (1)
{
/* LED1 blinks */
BSP_LED_Toggle(LED1);
HAL_Delay(20);
}
}
/**
* @brief Configure the MPU attributes
* @param None
* @retval None
*/
static void MPU_Config(void)
{
MPU_Region_InitTypeDef MPU_InitStruct;
/* Disable the MPU */
HAL_MPU_Disable();
/* Configure the MPU as Strongly ordered for not defined regions */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x00;
MPU_InitStruct.Size = MPU_REGION_SIZE_4GB;
MPU_InitStruct.AccessPermission = MPU_REGION_NO_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER0;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.SubRegionDisable = 0x87;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Configure the MPU attributes as WT for SDRAM */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0xC0000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_32MB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER1;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Configure the MPU attributes FMC control registers */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0xA0000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_8KB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER2;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.SubRegionDisable = 0x0;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Enable the MPU */
HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @brief CPU L1-Cache enable.
* @param None
* @retval None
*/
static void CPU_CACHE_Enable(void)
{
/* Enable I-Cache */
SCB_EnableICache();
/* Enable D-Cache */
SCB_EnableDCache();
}
/**
* @}
*/
/**
* @}
*/