
January 2019 UM1891 Rev 9 1/27

1

UM1891
User manual

Getting started with STM32CubeF7 MCU Package
 for STM32F7 Series

Introduction

STMCube™ is an STMicroelectronics original initiative to make developers’ life easier by
reducing development effort, time and cost. STM32Cube is the implementation of
STMCube™ that covers the whole STM32 portfolio.

STM32Cube includes:

• STM32CubeMX, a graphical software configuration tool that allows the generation of C
initialization code using graphical wizards

• A comprehensive MCU Package, delivered per series (such as STM32CubeF7 for
STM32F7 Series):

– The STM32Cube HAL, an STM32 abstraction layer embedded software, ensuring the
maximum portability across the STM32 portfolio.

– Low-layer APIs (LL) offering a fast light-weight expert-oriented layer which is closer to
the hardware than the HAL. The LL APIs are available only for a set of peripherals.

– A consistent set of middleware components such as RTOS, USB, TCP/IP and
graphics.

– All embedded software utilities, delivered with a full set of examples.

This user manual describes how to get started with the STM32CubeF7 MCU Package.
Section 1 describes the main features of the STM32CubeF7 firmware, part of the
STMCube™ initiative.

Section 2 and Section 3 provide an overview of the STM32CubeF7 architecture and MCU
Package structure.

www.st.com

http://www.st.com

Contents UM1891

2/27 UM1891 Rev 9

Contents

1 STM32CubeF7 main features . 5

2 STM32CubeF7 architecture overview . 7

2.1 Level 0 . 7

2.1.1 Board support package (BSP) . 8

2.1.2 Hardware abstraction layer (HAL) . 8

2.1.3 Basic peripheral usage examples . 8

2.1.4 Low layer (LL) . 9

2.2 Level 1 . 9

2.2.1 Middleware components . 9

2.2.2 Examples based on the middleware components 11

2.3 Level 2 .11

3 STM32CubeF7 MCU Package overview . 12

3.1 Supported STM32F7 Series devices and hardware 12

3.2 MCU Package overview . 14

4 Getting started with STM32CubeF7 . 17

4.1 Running your first example . 17

4.2 Developing your own application . 18

4.2.1 HAL application . 18

4.2.2 LL application . 20

4.3 Using STM32CubeMX to generate the initialization C code 21

4.4 Getting STM32CubeF7 release updates . 21

4.4.1 Installing and running the STM32CubeUpdater program 21

5 FAQ . 22

6 Revision history . 25

UM1891 Rev 9 3/27

UM1891 List of tables

3

List of tables

Table 1. Macros for STM32F7 Series . 12
Table 2. Evaluation and discovery boards for STM32F7 Series. 13
Table 3. Number of examples available for each board . 15
Table 4. Document revision history . 25

List of figures UM1891

4/27 UM1891 Rev 9

List of figures

Figure 1. STM32CubeF7 firmware components . 6
Figure 2. STM32CubeF7 firmware architecture . 7
Figure 3. STM32CubeF7 MCU Package structure . 14
Figure 4. STM32CubeF7 example overview . 16

UM1891 Rev 9 5/27

UM1891 STM32CubeF7 main features

26

1 STM32CubeF7 main features

The STM32CubeF7 MCU Package runs on STM32 microcontrollers based on the Arm®(a)
Cortex® -M7 processor.

STM32CubeF7 gathers, in a single package, all the generic embedded software
components required to develop an application on STM32F7 microcontrollers. In line with
the STMCube™ initiative, this set of components is highly portable, not only within the
STM32F7 Series but also to other STM32 series.

STM32CubeF7 is fully compatible with STM32CubeMX code generator that allows the user
to generate initialization code. The package includes the low layer (LL) and the hardware
abstraction layer (HAL) APIs that cover the microcontroller hardware, together with an
extensive set of examples running on STMicroelectronics boards. The HAL and LL APIs are
available in an open-source BSD license for user convenience.

The STM32CubeF7 package also contains a set of middleware components with the
corresponding examples. They come with very permissive license terms:

• Full USB Host and device stack supporting many classes:

– Host Classes: HID, MSC, CDC, Audio, MTP.

– Device Classes: HID, MSC, CDC, Audio, DFU.

• Graphics:

– STemWin, a professional graphical stack solution available in binary format and
based on the emWin solution from ST's partner SEGGER

– TouchGFX, a professional graphical stack solution from STMicroelectronics
available in binary format..

– LibJPEG, an open source implementation on STM32 for JPEG images encoding
and decoding.

• CMSIS-RTOS implementation with FreeRTOS open source solution

• FAT File system based on open source FatFs solution

• TCP/IP stack based on open source LwIP solution

• SSL/TLS secure layer based on open source PolarSSL

A demonstration implementing all these middleware components is also provided in the
STM32CubeF7 package.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

STM32CubeF7 main features UM1891

6/27 UM1891 Rev 9

Figure 1. STM32CubeF7 firmware components

UM1891 Rev 9 7/27

UM1891 STM32CubeF7 architecture overview

26

2 STM32CubeF7 architecture overview

The STM32CubeF7 firmware solution is built around three independent levels that can
easily interact with each other as described in Figure 2.

Figure 2. STM32CubeF7 firmware architecture

2.1 Level 0

This level is divided into three sub-layers:

• Board support package (BSP)

• Hardware abstraction layer (HAL)

• Basic peripheral usage examples

STM32CubeF7 architecture overview UM1891

8/27 UM1891 Rev 9

2.1.1 Board support package (BSP)

This layer offers a set of APIs relative to the hardware components in the hardware boards
(Audio codec, I/O expander, Touchscreen, SRAM driver, LCD drivers. etc…). It is composed
of two parts:

• Component

This is the driver related to the external device on the board and not related to the
STM32, the component driver provides specific APIs to the BSP driver external
components and can be ported to any board.

• BSP driver

It allows the user to link the component driver to a specific board and provides a set of
user-friendly APIs. The API naming rule is BSP_FUNCT_Action(), e.g.
BSP_LED_Init(), BSP_LED_On()

The BSP is based on a modular architecture allowing an easy porting on any hardware by
just implementing the low level routines.

2.1.2 Hardware abstraction layer (HAL)

The HAL layer provides the low level drivers and the hardware interfacing methods to
interact with the upper layers (application, libraries and stacks). It provides generic, multi
instance and function-oriented APIs that simplify the user application implementation by
providing ready-to-use processes. As an example, for the communication peripherals (such
as I2S or UART) it includes APIs to initialize and configure the peripheral, manage data
transfer based on polling, interrupt or DMA process, and handle communication errors that
may raise during communication. The HAL drivers APIs are split in two categories:

• Generic APIs, which provide common and generic functions to all the STM32 Series

• Extension APIs, which provide specific and customized functions for a specific family or
a specific part number.

2.1.3 Basic peripheral usage examples

This layer contains the examples of the basic operation of the STM32F7 peripherals using
either the HAL or/and the low-layer drivers APIs as well as the BSP resources.

UM1891 Rev 9 9/27

UM1891 STM32CubeF7 architecture overview

26

2.1.4 Low layer (LL)

• The low-layer APIs provide low-level APIs at register level, with a better optimization
but less portability. They require a deep knowledge of MCU and peripheral
specifications. The LL drivers are designed to offer a fast light-weight expert-oriented
layer which is closer to the hardware than the HAL. Contrary to the HAL, the LL APIs
are not provided for peripherals where the optimized access is not a key feature, or
those requiring a heavy software configuration and/or a complex upper-level stack
(such as FMC, USB or SDMMC).

The LL drivers feature:

• a set of functions to initialize peripheral main features according to the parameters
specified in data structures

• a set of functions used to fill initialization data structures with the reset values
corresponding to each field

• a function for peripheral de-initialization (peripheral registers restored to their default
values)

• a set of in-line functions for a direct and atomic register access

• full independence from the HAL and the capability to be used in standalone mode
(without HAL drivers)

• full coverage of the supported peripheral features.

2.2 Level 1

This level is divided into two sub-layers.

2.2.1 Middleware components

Middleware components are a set of Libraries covering USB Host and device Libraries,
STemWin, TouchGFX, LibJPEG, FreeRTOS, FatFs, LwIP, and PolarSSL. Horizontal
interactions between the components of this layer are performed directly by calling the
feature APIs while the vertical interaction with the low level drivers is done through specific
callbacks and static macros implemented in the library system call interface. As example,
the FatFs implements the disk I/O driver to access microSD drive or the USB Mass Storage
Class.

The main features of each middleware component are as follows:

• USB host and device libraries

– Several USB classes supported (Mass-Storage, HID, CDC, DFU, AUDIO, MTP)

– Support of multi packet transfer features: allows sending big amounts of data
without splitting them into max packet size transfers.

– Use of configuration files to change the core and the library configuration without
changing the library code (read only).

– 32-bit aligned data structures to handle DMA-based transfer in High-speed
modes.

– Support of multi USB OTG core instances from user level through configuration
file (that allows an operation with more than one USB host/device peripheral).

– RTOS and Standalone operation

STM32CubeF7 architecture overview UM1891

10/27 UM1891 Rev 9

– The link with low-level driver through an abstraction layer using the configuration
file to avoid any dependency between the Library and the low-level drivers.

• STemWin graphical stack

– Professional grade solution for GUI development based on Segger’s emWin
solution

– Optimized display drivers

– Software tools for code generation and bitmap editing (STemWin Builder…)

• TouchGFX graphical stack

– TouchGFX is a modern C++ framework for high-end graphics on STM32
microcontroller screen transition effects, easing equations for animations

– Image dithering, alpha blending, 2D/3D image rotation and scaling (no extra
memory required)

– Fast occlusion culling, to avoid drawing hidden pixels in widgets

– Rasterization of lines, circles and custom shapes, with anti-aliasing

– Direct rendering from memory mapped Flash, direct frame buffer manipulation for
custom widgets, extensive use of Chrom-ART Accelerator™ for rendering

– TrueType and OpenType font support, 1-, 2-, 4-, 8-bit anti-aliased text rendering,
translations for any number of languages

– Customizable widgets using object-oriented design, Model-View-Presenter pattern

– GCC, EWARM, MDK-ARM compiler support, PC Simulator, GCC, MSVS compiler
support for simulator builds

– TouchGFX Designer, intuitive WYSIWYG designer tool, with an automatic code
generation and an automatic IDE project updater (EWARM, MDK-ARM, MSVS).

Support of FreeRTOS and any CMSIS-OS compliant operating system out of the box

• LibJPEG

– Open source standard

– C implementation for JPEG image encoding and decoding.

• FreeRTOS

– Open source standard

– CMSIS compatibility layer

– Tickless operation during low-power mode

– Integration with all STM32Cube™ middleware modules

• FAT File system

– FatFs FAT open source library

– Long file name support

– Dynamic multi-drive support

– RTOS and standalone operation

– Examples with microSD and USB host Mass-storage class

• LwIP TCP/IP stack

– Open source standard

– RTOS and standalone operation

UM1891 Rev 9 11/27

UM1891 STM32CubeF7 architecture overview

26

2.2.2 Examples based on the middleware components

Each middleware component comes with one or more examples (called also Applications)
showing how to use it. Integration examples that use several middleware components are
provided as well.

2.3 Level 2

This level is composed of a single layer, which is a global real-time and graphical
demonstration based on the middleware service layer, the low level abstraction layer and
the basic peripheral usage applications for board-based features.

STM32CubeF7 MCU Package overview UM1891

12/27 UM1891 Rev 9

3 STM32CubeF7 MCU Package overview

3.1 Supported STM32F7 Series devices and hardware

STM32Cube offers a highly portable hardware abstraction layer (HAL) built around a
generic and modular architecture. It allows the upper layers, the middleware and
application, to implement their functions without knowing, in-depth, the MCU used. This
improves the library code re-usability and guarantees an easy portability from one device to
another.

The STM32CubeF7 offers a full support for all the STM32F7 Series devices. The user only
needs to define the right macro in stm32f7xx.h.

Table 1 lists which macro to define depending on the used STM32F7 Series device. This
macro can also be defined in the compiler preprocessor.

Table 1. Macros for STM32F7 Series

Macro defined
in stm32f7xx.h

STM32F7 Series devices

STM32F756xx STM32F756VG, STM32F756ZG, STM32F756IG, STM32F756BG, STM32F756NG

STM32F746xx
STM32F746VE, STM32F746VG, STM32F746ZE, STM32F746ZG, STM32F746IE,
STM32F746IG, STM32F746BE, STM32F746BG, STM32F746NE,
STM32F746NG

STM32F745xx
STM32F745VE, STM32F745VG, STM32F745ZG, STM32F745ZE, STM32F745IE,
STM32F745IG

STM32F765xx
STM32F765BI, STM32F765BG, STM32F765NI, STM32F765NG, STM32F765II,
STM32F765IG, STM32F765ZI,STM32F765ZG, STM32F765VI, STM32F765VG

STM32F767xx
STM32F767BG, STM32F767BI, STM32F767IG, STM32F767II, STM32F767NG,
STM32F767NI, STM32F767VG, STM32F767VI, STM32F767ZG, STM32F767ZI,
STM32F768AI

STM32F769xx
STM32F769AG, STM32F769AI, STM32F769BG, STM32F769BI, STM32F769IG,
STM32F769II, STM32F769NG, STM32F769NI

STM32F777xx
STM32F777BI, STM32F777II, STM32F777NI, STM32F777VI, STM32F777ZI,
STM32F778AI

STM32F779xx STM32F779AI, STM32F779BI, STM32F779II, STM32F779NI

STM32F722xx
STM32F722IE, STM32F722ZE, STM32F722VE, STM32F722RE, STM32F722IC,
STM32F722ZC, STM32F722VC, STM32F722RC

STM32F723xx
STM32F723IE, STM32F723ZE, STM32F723VE, STM32F723IC, STM32F723ZC,
STM32F723VC

STM32F732xx STM32F732IE, STM32F732ZE, STM32F732VE, STM32F732RE

STM32F733xx STM32F733IE, STM32F733ZE, STM32F733VE

STM32F730xx STM32F730Z8, STM32F730V8, STM32F730R8, STM32F730I8

STM32F750xx STM32F750Z8, STM32F750V8, STM32F750N8

UM1891 Rev 9 13/27

UM1891 STM32CubeF7 MCU Package overview

26

STM32CubeF7 features a rich set of examples and demonstrations at all levels making it
easy to understand and use any HAL driver and/or middleware components. These
examples can be run on any of the STMicroelectronics boards as listed in Table 2:

The STM32CubeF7 firmware can run on any compatible hardware. Simply update the BSP
drivers to port the provided examples on the user board if its hardware features are the
same (LED, LCD display, pushbuttons).

Table 2. Evaluation and discovery boards for STM32F7 Series

Board STM32F7 Series devices supported

STM327x6G_EVAL(1)

1. STM327x6G_EVAL refers to STM32746G_EVAL and STM32756G_EVAL evaluation boards.

STM32F746xx, STM32F756xx and STM32F750xx(2)

2. The STM32F730xx and STM32F750xx devices come with 64 Kbytes of internal Flash memory. The
STM32F7x0 Value line devices are intended for the code execution from external memories. Dedicated
applications are available under Projects\STM32F723E-Discovery\Applications\ExtMem_CodeExecution
and Projects\STM32756G_EVAL\Applications\ExtMem_CodeExecution.

32F746GDISCOVERY STM32F746NG

NUCLEO-F746ZG STM32F746ZG

STM32F7x9I_EVAL(3)

3. STM32F7x9I_EVAL refers to STM32F769I_EVAL and STM32F779I_EVAL evaluation boards.

STM32F779xx and STM32F769xx

32F769IDISCOVERY STM32F769NI

NUCLEO-F767ZI STM32F767ZI

32F723EDISCOVERY STM32F723IE and STM32F730xx(2)

NUCLEO-F722ZE STM32F722ZE

STM32F7308-DISCO STM32F730xx

STM32F7508-DISCO STM32F750xx

STM32CubeF7 MCU Package overview UM1891

14/27 UM1891 Rev 9

3.2 MCU Package overview

The STM32CubeF7 firmware solution is provided in a single zip package with the structure
shown in Figure 3.

Figure 3. STM32CubeF7 MCU Package structure

For each board, a set of examples are provided with preconfigured projects for EWARM,
MDK-ARM and SW4STM32 toolchains.

Figure 4 shows the project structure for the STM327x6G_EVAL board. The structure is
identical for other boards.

UM1891 Rev 9 15/27

UM1891 STM32CubeF7 MCU Package overview

26

The examples are classified depending on the STM32Cube level they apply to, and are
named as follows:

• Examples in level 0 are called Examples, Examples_LL, and Examples_MIX. They use
respectively HAL drivers, LL drivers and a mix of HAL and LL drivers without any
middleware component.

• Examples in level 1 are called Applications, they provide typical use cases of each
middleware component.

• Examples in level 2 are called Demonstration, they implement all the HAL, BSP and
middleware components.

A template project is provided to quickly build any firmware application on a given board.

All examples have the same structure:

• \Inc folder contains all header files

• \Src folder for the sources code

• \EWARM, \MDK-ARM and \SW4STM32 folders contain the preconfigured project for
each toolchain

• readme.txt describes the example behavior and the environment required to make it
work.

Table 3 details the number of examples, applications and demonstrations available for each
board.

Table 3. Number of examples available for each board

Board

Te
m

p
la

te
s

Te
m

p
la

te
s_

L
L

E
xa

m
p

le
s

E
x

am
p

le
s_

L
L

E
xa

m
p

le
s_

M
IX

A
p

p
lic

at
io

n
s

D
e

m
o

n
st

ra
ti

o
n

s

STM327x6G_EVAL 1 1 93 0 0 70 1

32F746GDISCOVERY 1 1 32 0 0 29 1

NUCLEO-F746ZG 1 1 28 0 0 8 1

STM32F7x9I_EVAL 1 1 123 0 0 51 1

32F769IDISCOVERY 1 1 30 0 0 20 1

NUCLEO-F767ZI 1 1 41 73 14 8 1

32F723EDISCOVERY 1 1 41 0 0 25 1

NUCLEO-F722ZE 1 1 33 0 0 20 1

STM32F7308-DISCO 1 0 8 0 0 6 1

STM32F7508-DISCO 1 0 12 0 0 9 3

STM32CubeF7 MCU Package overview UM1891

16/27 UM1891 Rev 9

Figure 4. STM32CubeF7 example overview

UM1891 Rev 9 17/27

UM1891 Getting started with STM32CubeF7

26

4 Getting started with STM32CubeF7

4.1 Running your first example

This section explains how simple it is to run a first example with STM32CubeF7. It uses as
an illustration the generation of a simple LED toggling example running on the
STM327x6G_EVAL board:

1. After downloading the STM32CubeF7 MCU Package, unzip it into a directory of your
choice, make sure not to modify the package structure shown in Figure 3.

2. Browse to \Projects\STM327x6G_EVAL\Examples.

3. Open \GPIO, then the \GPIO_EXTI folder.

4. Open the project with your preferred toolchain.

5. Rebuild all files and load your image into target memory.

6. Run the example: each time you press the Tamper push-button, the LED1 will toggle
(for more details, refer to the example readme file).

The following section provides a quick overview on how to open, build and run an
example with the supported toolchains.

• EWARM

– Under the example folder, open the \EWARM subfolder

– Open the Project.eww workspace(a)

– Rebuild all files: Project → Rebuild all

– Load project image: Project → Debug

– Run program: Debug → Go(F5)

• MDK-ARM

– Under the example folder, open the \MDK-ARM subfolder

– Open the Project.uvproj workspace(a)

– Rebuild all files: Project → Rebuild all target files

– Load project image: Debug → Start/Stop Debug Session

– Run program: Debug → Run (F5)

• SW4STM32

– Open the SW4STM32 toolchain

– Click on File → Switch Workspace → Other and browse to the SW4STM32
workspace directory

– Click on File → Import, select General → 'Existing Projects into Workspace' and
then click “Next”.

– Browse to the SW4STM32 workspace directory, select the project

– Rebuild all project files: Select the project in the “Project explorer” window then
click on Project → build project menu.

a. The workspace name may change from one example to another.

Getting started with STM32CubeF7 UM1891

18/27 UM1891 Rev 9

4.2 Developing your own application

4.2.1 HAL application

This section describes the required steps needed to create your own application using
STM32CubeF7.

1. Create your project: to create a new project you can either start from the Template
project provided for each board under \Projects\<STM32xx_xxx>\Templates or from
any available project under \Projects\<STM32xx_xxx>\Examples or
\Projects\<STM32xx_xxx>\Applications (<STM32xx_xxx> refers to the board name,
e.g. STM327x6G_EVAL).

The Template project provides an empty main loop function, it is a good starting point to
get familiar with the project settings for STM32CubeF7. The template has the following
characteristics:

a) It contains sources of the HAL, CMSIS and BSP drivers which are the minimum
required components to develop code for a given board

b) It contains the include paths for all the firmware components

c) It defines the STM32F7 device supported, allowing to have the right configuration
for the CMSIS and HAL drivers

d) It provides ready-to-use user files preconfigured as follows:

- HAL is initialized

- SysTick ISR implemented for HAL_Delay() purpose

- System clock is configured with the maximum frequency of the device

Note: When copying an existing project to another location, make sure to update the include
paths.

2. Add the necessary middleware to your project (optional): the available middleware
stacks are: USB Host and device Libraries, STemWin, TouchGFX, LibJPEG,
FreeRTOS, FatFs, LwIP, and PolarSSL. To find out which source files you need to add
to the project files list, refer to the documentation provided for each middleware, you
may also have a look at the applications available under
\Projects\STM32xx_xxx\Applications\<MW_Stack> (<MW_Stack> refers to the
Middleware stack, for example USB_Device) to get a better idea of the source files to
be added and the include paths.

3. Configure the firmware components: the HAL and middleware components offer a
set of build time configuration options using macros declared with “#define” in a header
file. A template configuration file is provided within each component, it has to be copied
to the project folder (usually the configuration file is named xxx_conf_template.h. The
word “_template” needs to be removed when copying it to the project folder). The
configuration file provides enough information to know the effect of each configuration
option. More detailed information is available in the documentation provided for each
component.

4. Start the HAL Library: after jumping to the main program, the application code needs
to call HAL_Init() API to initialize the HAL Library, which does the following:

a) Configure the Flash prefetch, and instruction cache through ART accelerator.

b) Configure the SysTick to generate an interrupt every 1ms. The SysTick is clocked
by the HSI (default configuration after reset)

c) Set NVIC Group Priority to 4

UM1891 Rev 9 19/27

UM1891 Getting started with STM32CubeF7

26

d) Call the HAL_MspInit() callback function defined in user file stm32f7xx_hal_msp.c
to do the global low level hardware initialization

5. Configure the system clock: the system clock configuration is done by calling these
two APIs

a) HAL_RCC_OscConfig(): configures the internal and/or external oscillators, PLL
source and factors. The user may select to configure one oscillator or all
oscillators. The PLL configuration can be skipped if there is no need to run the
system at high frequency

b) HAL_RCC_ClockConfig(): configures the system clock source, Flash latency and
AHB and APB prescalers

6. Peripheral initialization

a) Start by writing the peripheral HAL_PPP_MspInit function. For this function,
proceed as follows:

– Enable the peripheral clock.

– Configure the peripheral GPIOs.

– Configure DMA channel and enable DMA interrupt (if needed).

– Enable peripheral interrupt (if needed).

b) Edit the stm32f7xx_it.c to call the required interrupt handlers (peripheral and
DMA), if needed.

c) Write process complete callback functions if you plan to use peripheral interrupt or
DMA.

d) In your main.c file, initialize the peripheral handle structure, then call the function
HAL_PPP_Init() to initialize your peripheral.

7. Develop your application process: at this stage, your system is ready and you can
start developing your application code.

a) The HAL provides intuitive and ready-to-use APIs for configuring the peripheral,
and supports polling, interrupt and DMA programming models, to accommodate
any application requirements. For more details on how to use each peripheral,
refer to the rich examples set provided.

b) If your application has some real-time constraints, you can find a large set of
examples showing how to use FreeRTOS and integrate it with all middleware
stacks provided in STM32CubeF7, it can be a good starting point for your
development.

Note: In the default HAL implementation, the SysTick timer is the timebase source. It is used to
generate interrupts at regular time intervals. If HAL_Delay() is called from peripheral ISR
process, the SysTick interrupt must have higher priority (numerically lower) than the
peripheral interrupt. Otherwise, the caller ISR process is blocked. Functions affecting
timebase configurations are declared as __Weak to make override possible in case of other
implementations in user file (using a general purpose timer for example or other time
source). For more details please refer to HAL_TimeBase example.

Getting started with STM32CubeF7 UM1891

20/27 UM1891 Rev 9

4.2.2 LL application

This section describes the steps needed to create your own LL application using
STM32CubeF7.

1. Create your project

To create a new project, it is possible to start either from the Templates_LL project
provided for each board under \Projects\<STM32xxx_yyy>\Templates_LL or from any
available project under \Projects\<STM32xxy_yyy>\Examples_LL (<STM32xxx_yyy>
refers to the board name, such as NUCLEO-F767ZI).

The Template project provides an empty main loop function, however it is a good
starting point to get familiar with project settings for STM32CubeF7.

The template main characteristics are listed below:

a) It contains the source code of LL and CMSIS drivers, that are the minimal
components to develop a code on a given board.

b) It contains the include paths for all the required firmware components.

c) It selects the supported STM32F7 device and allows configuring the CMSIS and
LL drivers accordingly.

d) It provides ready-to-use user files, that are pre-configured as follows:

- main.h: LED & USER_BUTTON definition abstraction layer

- main.c: System clock configured with the maximum frequency.

2. Port an existing project to another board

To port an existing project to another target board, start from the Templates_LL project
provided for each board and available under
\Projects\<STM32xxx_yyy>\Templates_LL:

a) Select an LL example

To find the board on which LL examples are deployed, refer to the list of LL
examples in STM32CubeProjectsList.html, to Table 3: Number of examples
available for each board, or to STM32Cube firmware examples for STM32F7
Series application note (AN4731).

b) Port the LL example

– Copy/paste the Templates_LL folder to keep the initial source or directly update
the existing Templates_LL project.

– Then LL example porting consists mainly in replacing the Templates_LL files by
the Examples_LL targeted.

– Keep all board specific parts. For reasons of clarity, the board specific parts have
been flagged with specific tags:

/* ====== BOARD SPECIFIC CONFIGURATION CODE BEGIN =========== */

/* ======BOARD SPECIFIC CONFIGURATION CODE END ============= */

Thus the main porting steps are the following:

– Replace stm32f7xx_it.h file

– Replace stm32f7xx_it.c file

– Replace main.h file and update it: keep the LED and user button definition of the
LL template under "BOARD SPECIFIC CONFIGURATION" tags.

– Replace main.c file, and update it:

- Keep the clock configuration of the SystemClock_Config() LL template: function
 under "BOARD SPECIFIC CONFIGURATION" tags.

UM1891 Rev 9 21/27

UM1891 Getting started with STM32CubeF7

26

- Depending on LED definition, replace all LEDx_PIN by another LEDx (number)
 available in main.h file.

Thanks to these adaptations, the example should be functional on the targeted board.

4.3 Using STM32CubeMX to generate the initialization C code

An alternative to steps 1 to 6 described in Section 4.2 consists in using the STM32CubeMX
tool to easily generate code for the initialization of the system, the peripherals and
middleware (steps 1 to 6 above) through a step-by-step process:

1. Select the STMicroelectronics STM32 microcontroller that matches the required set of
peripherals.

2. Configure each required embedded software thanks to a pinout-conflict solver, a clock-
tree setting helper, a power consumption calculator, and an utility performing MCU
peripheral configuration (GPIO, USART...) and middleware stacks (USB, TCP/IP...).

3. Generate the initialization C code based on the configuration selected. This code is
ready to be used within several development environments. The user code is kept at
the next code generation.

For more information, please refer to “STM32CubeMX for STM32 configuration and
initialization C code generation” user manual (UM1718).

4.4 Getting STM32CubeF7 release updates

The STM32CubeF7 MCU Package comes with an updater utility: STM32CubeUpdater, also
available as a menu within STM32CubeMX code generation tool.

The updater solution detects new firmware releases and patches available on www.st.com
and proposes to download them to the user’s computer.

4.4.1 Installing and running the STM32CubeUpdater program

• Double-click SetupSTM32CubeUpdater.exe file to launch the installation.

• Accept the license terms and follow the different installation steps.

Upon successful installation, STM32CubeUpdater becomes available as an
STMicroelectronics program under Program Files and is automatically launched.

The STM32CubeUpdater icon appears in the system tray:

• Right-click the updater icon and select Updater Settings to configure the Updater
connection and to perform manual or automatic checks. For more details on Updater
configuration, refer to section 3 of the STM32CubeMX User manual (UM1718).

FAQ UM1891

22/27 UM1891 Rev 9

5 FAQ

What is the license scheme for the STM32CubeF7 firmware?

The HAL is distributed under a non-restrictive BSD (Berkeley Software Distribution) license.

The middleware stacks made by ST (USB Host and device Libraries, STemWin, TouchGFX)
come with a licensing model allowing easy reuse, provided it runs on an ST device.

The middleware based on well-known open-source solutions (FreeRTOS, FatFs, LwIP and
PolarSSL) have user-friendly license terms. For more details, refer to the license agreement
of each middleware.

What boards are supported by the STM32CubeF7 MCU Package?

The STM32CubeF7 MCU Package provides BSP drivers and ready-to-use examples for the
following STM32F7 boards: STM327x6G_EVAL, 32F746GDISCOVERY,
NUCLEO-F746ZG, STM32F769I_EVAL, 32F769IDISCOVERY, 32F723EDISCOVERY,
NUCLEO-F722ZE and NUCLEO-F767ZI.

Does the HAL take benefit from interrupts or DMA? How can this be
controlled?

Yes. The HAL supports three API programming models: polling, interrupt and DMA (with or
without interrupt generation).

Are any examples provided with the ready-to-use toolset projects?

Yes. STM32CubeF7 provides a rich set of examples and applications (around 167 for
STM327x6G_EVAL). They come with the preconfigured project of several toolsets: IAR, Keil
and GCC.

How are the product/peripheral specific features managed?

The HAL offers extended APIs, i.e. specific functions as add-ons to the common API to
support features available on some products/lines only.

How can STM32CubeMX generate code based on embedded software?

STM32CubeMX has a built-in knowledge of STM32 microcontrollers, including their
peripherals and software. This enables the tool to provide a graphical representation to the
user and generate *.h/*.c files based on user configuration.

How to get regular updates on the latest STM32CubeF7 firmware releases?

The STM32CubeF7 MCU Package comes with an updater utility, STM32CubeUpdater, that
can be configured for automatic or on-demand checks for new MCU Package updates (new
releases or/and patches).

STM32CubeUpdater is integrated as well within the STM32CubeMX tool. When using this
tool for STM32F7 configuration and initialization C code generation, the user can benefit
from STM32CubeMX self-updates as well as STM32CubeF7 MCU Package updates.

For more details, refer to Section 4.4.

UM1891 Rev 9 23/27

UM1891 FAQ

26

Is there any link with standard peripheral libraries?

The STM32Cube HAL and LL drivers are the replacement of the standard peripheral library:

• The HAL drivers offer a higher abstraction level compared to the standard peripheral
APIs. They focus on peripheral common features rather than hardware. Their higher
abstraction level allows defining a set of user-friendly APIs that can be easily ported
from one product to another.

• The LL drivers offer low-level APIs at register level. They are organized in a simpler
and clearer way than direct register accesses. The LL drivers also include peripheral
initialization APIs, which are more optimized compared to what is offered by the SPL,
while being functionally similar. Compared to the HAL drivers, these LL initialization
APIs allows an easier migration from the SPL to the STM32Cube LL drivers, since
each SPL API has its equivalent LL API(s).

How can I include LL drivers in my environment? Is there any LL
configuration file as for HAL?

There is no configuration file. The source code shall directly include the necessary
stm32f7xx_ll_ppp.h file(s).

Can I use HAL and LL drivers together? If yes, what are the constraints?

It is possible to use both HAL and LL drivers. One can handle the IP initialization phase with
the HAL and then manage the I/O operations with the LL drivers.

The major difference between HAL and LL is that the HAL drivers require to create and use
handles for operation management while the LL drivers operates directly on peripheral
registers. Mixing HAL and LL is illustrated in the Examples_MIX example.

When should I use HAL versus LL drivers?

The HAL drivers offer high-level and function-oriented APIs, with a high level of portability.
the product/IPs complexity is hidden for end users.

The LL drivers offer low-level APIs at registers level, with a better optimization but less
portability. They require a deep knowledge of the product/IPs specifications.

Is there any LL APIs which are not available with HAL?

Yes, there are.

A few Cortex® APIs have been added in stm32f7xx_ll_cortex.h e.g. for accessing the SCB
or the SysTick registers.

FAQ UM1891

24/27 UM1891 Rev 9

How are LL initialization APIs enabled?

The definition of LL initialization APIs and associated resources (structure, literals and
prototypes) is conditioned by the USE_FULL_LL_DRIVER compilation switch.

To be able to use the LL APIs, add this switch in the toolchain compiler preprocessor.

Why are SysTick interrupts not enabled on LL drivers?

When using the LL drivers in standalone mode, the user does not need to enable SysTick
interrupts because they are not used in the LL APIs, while the HAL functions requires
SysTick interrupts to manage timeouts.

UM1891 Rev 9 25/27

UM1891 Revision history

26

6 Revision history

Table 4. Document revision history

Date Revision Changes

30-Apr-2015 1 Initial release.

12-Nov-2015 2

Updated Table 2: Evaluation and discovery boards for STM32F7
Series title and adding 2 new rows for 32F746GDISCOVERY and
NUCLEO-F746ZG boards.

Updated Table 3: Number of examples available for each board
application number at 61 instead of 58 and adding 2 new rows for
32F746GDISCOVERY and NUCLEO-F746ZG boards.

Updated Figure 1: STM32CubeF7 firmware components.

Updated Section 5: FAQ 2nd question about the boards supported by
STM32CubeF7 firmware package, adding 32F746GDISCOVERY and
NUCLEO-F746ZG boards.

21-Apr-2016 3

Updated Table 1: Macros for STM32F7 Series adding rows for
STM32F76xxx and STM32F77xxx devices.

Updated Table 2: Evaluation and discovery boards for STM32F7
Series adding new boards and note 2.

Updated Table 3: Number of examples available for each board.

21-Dec-2016 4

Added low layer API (LL) feature:

– Updated cover

– Updated Section 1: STM32CubeF7 main features.

– Updated Figure 1: STM32CubeF7 firmware components.

– Updated Section 2: STM32CubeF7 architecture overview.

– Updated Figure 2: STM32CubeF7 firmware architecture.

Updated Table 1: Macros for STM32F7 Series adding macros for
STM32F72xxx and STM32F73xxx devices.

Added 32F723EDISCOVERY and NUCLEO-F722ZE boards:

– Updated Table 2: Evaluation and discovery boards for STM32F7
Series.

– Updated Table 3: Number of examples available for each board.

Updated Section 4: Getting started with STM32CubeF7 adding
Section 4.2.2: LL application.

Updated Section 5: FAQ.

01-Feb-2018 5 Not applicable, superseded by revision 7

12-Feb-2018 6 Internal version.

22-Mar-2018 7
No major change versus revision 4.

Minor modification: replaced “firmware package” by “MCU Package” in
the whole document.

29-Jun-2018 8

Updated Table 1: Macros for STM32F7 Series adding STM32F730xx
and STM32F750xx devices.

Updated Table 2: Evaluation and discovery boards for STM32F7
Series adding STM32F730xx and STM32F750xx devices.

Updated application number in Table 3: Number of examples available
for each board.

Revision history UM1891

26/27 UM1891 Rev 9

23-Jan-2019 9

Updated Section 1: STM32CubeF7 main features, Section 2.2.1:
Middleware components, Section 4.2.1: HAL application and What is
the license scheme for the STM32CubeF7 firmware?.

Updated Table 2: Evaluation and discovery boards for STM32F7
Series and Table 3: Number of examples available for each board.

Minor text edits across the whole document.

Table 4. Document revision history (continued)

Date Revision Changes

UM1891 Rev 9 27/27

UM1891

27

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

	1 STM32CubeF7 main features
	Figure 1. STM32CubeF7 firmware components

	2 STM32CubeF7 architecture overview
	Figure 2. STM32CubeF7 firmware architecture
	2.1 Level 0
	2.1.1 Board support package (BSP)
	2.1.2 Hardware abstraction layer (HAL)
	2.1.3 Basic peripheral usage examples
	2.1.4 Low layer (LL)

	2.2 Level 1
	2.2.1 Middleware components
	2.2.2 Examples based on the middleware components

	2.3 Level 2

	3 STM32CubeF7 MCU Package overview
	3.1 Supported STM32F7 Series devices and hardware
	Table 1. Macros for STM32F7 Series
	Table 2. Evaluation and discovery boards for STM32F7 Series

	3.2 MCU Package overview
	Figure 3. STM32CubeF7 MCU Package structure
	Table 3. Number of examples available for each board
	Figure 4. STM32CubeF7 example overview

	4 Getting started with STM32CubeF7
	4.1 Running your first example
	4.2 Developing your own application
	4.2.1 HAL application
	4.2.2 LL application

	4.3 Using STM32CubeMX to generate the initialization C code
	4.4 Getting STM32CubeF7 release updates
	4.4.1 Installing and running the STM32CubeUpdater program

	5 FAQ
	6 Revision history
	Table 4. Document revision history

