STM32CubeF4/Projects/STM32F429I-Discovery/Examples/I2C/I2C_TwoBoards_RestartComIT/Src/main.c

488 lines
16 KiB
C
Raw Blame History

/**
******************************************************************************
* @file I2C/I2C_TwoBoards_RestartComIT/Src/main.c
* @author MCD Application Team
* @brief This sample code shows how to use STM32F4xx I2C HAL API to transmit
* and receive a data buffer with a communication process based on
* IT transfer and with a repeated start condition between the transmit
* and receive process..
* The communication is done using 2 Boards.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @{
*/
/** @addtogroup I2C_TwoBoards_RestartComIT
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Uncomment this line to use the board as master, if not it is used as slave */
#define MASTER_BOARD
#define I2C_ADDRESS 0x30F
/* I2C SPEEDCLOCK define to max value: 400 KHz on STM32F4xx*/
#define I2C_SPEEDCLOCK 400000
#define I2C_DUTYCYCLE I2C_DUTYCYCLE_2
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* I2C handler declaration */
extern I2C_HandleTypeDef I2cHandle;
/* Buffer used for transmission */
uint8_t aTxBuffer[] = " ****I2C_TwoBoards advanced communication based on IT**** ****I2C_TwoBoards advanced communication based on IT**** ****I2C_TwoBoards advanced communication based on IT**** ";
/* Buffer used for reception */
uint8_t aRxBuffer[RXBUFFERSIZE];
#ifndef MASTER_BOARD
/* Variable used to trig an address match code event */
__IO uint32_t uwTransferReadRequested = 0;
__IO uint32_t uwTransferWriteRequested = 0;
#endif
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static uint16_t Buffercmp(uint8_t *pBuffer1, uint8_t *pBuffer2, uint16_t BufferLength);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch, instruction and Data caches
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization: global MSP (MCU Support Package) initialization
*/
HAL_Init();
/* Configure the system clock to 180 MHz */
SystemClock_Config();
/* Configure LED3 and LED4 */
BSP_LED_Init(LED3);
BSP_LED_Init(LED4);
/*##-1- Configure the I2C peripheral ######################################*/
I2cHandle.Instance = I2Cx;
I2cHandle.Init.ClockSpeed = I2C_SPEEDCLOCK;
I2cHandle.Init.DutyCycle = I2C_DUTYCYCLE;
I2cHandle.Init.OwnAddress1 = I2C_ADDRESS;
I2cHandle.Init.AddressingMode = I2C_ADDRESSINGMODE_10BIT;
I2cHandle.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
I2cHandle.Init.OwnAddress2 = 0xFF;
I2cHandle.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
I2cHandle.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if(HAL_I2C_Init(&I2cHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
#ifdef MASTER_BOARD
/* Configure User push-button button */
BSP_PB_Init(BUTTON_KEY,BUTTON_MODE_GPIO);
/* Wait for User push-button press before starting the Communication */
while (BSP_PB_GetState(BUTTON_KEY) != GPIO_PIN_SET)
{
}
/* Wait for User push-button release before starting the Communication */
while (BSP_PB_GetState(BUTTON_KEY) != GPIO_PIN_RESET)
{
}
/* The board sends the message and expects to receive it back */
/*##-2- Start the transmission process #####################################*/
/* While the I2C in reception process, user can transmit data through
"aTxBuffer" buffer */
while(HAL_I2C_Master_Seq_Transmit_IT(&I2cHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)aTxBuffer, TXBUFFERSIZE, I2C_FIRST_FRAME)!= HAL_OK)
{
/* Error_Handler() function is called when Timeout error occurs.
When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
if (HAL_I2C_GetError(&I2cHandle) != HAL_I2C_ERROR_AF)
{
Error_Handler();
}
}
/*##-3- Wait for the end of the transfer ###################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/* Wait for User push-button press before starting the Communication */
while (BSP_PB_GetState(BUTTON_KEY) != GPIO_PIN_SET)
{
}
/* Wait for User push-button release before starting the Communication */
while (BSP_PB_GetState(BUTTON_KEY) != GPIO_PIN_RESET)
{
}
/*##-4- Put I2C peripheral in reception process ############################*/
while(HAL_I2C_Master_Seq_Receive_IT(&I2cHandle, (uint16_t)I2C_ADDRESS, (uint8_t *)aRxBuffer, RXBUFFERSIZE, I2C_LAST_FRAME) != HAL_OK)
{
/* Error_Handler() function is called when Timeout error occurs.
When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
if (HAL_I2C_GetError(&I2cHandle) != HAL_I2C_ERROR_AF)
{
Error_Handler();
}
}
#else
/* The board receives the message and sends it back */
/*##-3- Put I2C peripheral in listen mode process ###########################*/
if(HAL_I2C_EnableListen_IT(&I2cHandle) != HAL_OK)
{
/* Transfer error in reception process */
Error_Handler();
}
/*##-4- Wait Address Match Code event ######################################*/
/* Before starting a transfer, you need to wait a Master request event.
For simplicity reasons, this example is just waiting till an Address callback event,
but application may perform other tasks while transfer operation is ongoing. */
while(uwTransferReadRequested != 1)
{
}
/*##-5- Put I2C peripheral in reception process ############################*/
if(HAL_I2C_Slave_Seq_Receive_IT(&I2cHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE, I2C_FIRST_FRAME) != HAL_OK)
{
/* Transfer error in reception process */
Error_Handler();
}
/*##-6- Wait for the end of the transfer ###################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_LISTEN)
{
}
/*##-7- Wait Address Match Code event ######################################*/
/* Before starting a transfer, you need to wait a Master request event.
For simplicity reasons, this example is just waiting till an Address callback event,
but application may perform other tasks while transfer operation is ongoing. */
while(uwTransferWriteRequested != 1)
{
}
/*##-8- Start the transmission process #####################################*/
/* While the I2C in reception process, user can transmit data through
"aTxBuffer" buffer */
if(HAL_I2C_Slave_Seq_Transmit_IT(&I2cHandle, (uint8_t*)aTxBuffer, TXBUFFERSIZE, I2C_LAST_FRAME)!= HAL_OK)
{
/* Transfer error in transmission process */
Error_Handler();
}
#endif /* MASTER_BOARD */
/*##-5- Wait for the end of the transfer ###################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/*##-6- Compare the sent and received buffers ##############################*/
if(Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,RXBUFFERSIZE))
{
/* Processing Error */
Error_Handler();
}
/* Infinite loop */
while (1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 180000000
* HCLK(Hz) = 180000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 8000000
* PLL_M = 8
* PLL_N = 360
* PLL_P = 2
* PLL_Q = 7
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 5
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 360;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
if(HAL_PWREx_EnableOverDrive() != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
}
/**
* @brief Tx Transfer completed callback.
* @param I2cHandle: I2C handle
* @note This example shows a simple way to report end of IT Tx transfer, and
* you can add your own implementation.
* @retval None
*/
#ifdef MASTER_BOARD
void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Turn LED3 on: Transfer in transmission process is correct */
BSP_LED_On(LED3);
}
#else
void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Reset address match code event */
uwTransferWriteRequested = 0;
/* Turn LED3 on: Transfer in transmission process is correct */
BSP_LED_On(LED3);
}
#endif /* MASTER_BOARD */
/**
* @brief Rx Transfer completed callback.
* @param I2cHandle: I2C handle
* @note This example shows a simple way to report end of IT Rx transfer, and
* you can add your own implementation.
* @retval None
*/
#ifdef MASTER_BOARD
void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Turn LED3 on: Transfer in reception process is correct */
BSP_LED_On(LED3);
}
#else
void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Reset address match code event */
uwTransferReadRequested = 0;
/* Turn LED3 on: Transfer in reception process is correct */
BSP_LED_On(LED3);
}
#endif /* MASTER_BOARD */
#ifndef MASTER_BOARD
/**
* @brief Slave Address Match callback.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param TransferDirection: Master request Transfer Direction (Write/Read), value of @ref I2C_XferDirection_definition
* @param AddrMatchCode: Address Match Code
* @retval None
*/
void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode)
{
if(TransferDirection == I2C_DIRECTION_TRANSMIT)
{
uwTransferReadRequested = 1;
}
else if(TransferDirection == I2C_DIRECTION_RECEIVE)
{
uwTransferWriteRequested = 1;
}
/* A new communication with a Master is initiated */
/* Turn LED3 On: A Communication is initiated */
BSP_LED_On(LED3);
}
/**
* @brief Listen Complete callback.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval None
*/
void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c)
{
/* Turn LED3 off: Communication is completed */
BSP_LED_Off(LED3);
}
#endif
/**
* @brief I2C error callbacks.
* @param I2cHandle: I2C handle
* @note This example shows a simple way to report transfer error, and you can
* add your own implementation.
* @retval None
*/
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Turn Off LED3 */
BSP_LED_Off(LED3);
/* Turn On LED4 */
BSP_LED_On(LED4);
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED4 on */
BSP_LED_On(LED4);
while(1)
{
}
}
/**
* @brief Compares two buffers.
* @param pBuffer1, pBuffer2: buffers to be compared.
* @param BufferLength: buffer's length
* @retval 0 : pBuffer1 identical to pBuffer2
* >0 : pBuffer1 differs from pBuffer2
*/
static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength)
{
while (BufferLength--)
{
if ((*pBuffer1) != *pBuffer2)
{
return BufferLength;
}
pBuffer1++;
pBuffer2++;
}
return 0;
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/