STM32CubeF4/Projects/STM32F411RE-Nucleo/Examples/TIM/TIM_PWMInput/Src/main.c

283 lines
8.5 KiB
C

/**
******************************************************************************
* @file TIM/TIM_PWMInput/Src/main.c
* @author MCD Application Team
* @brief This example shows how to use the TIM peripheral to measure the
* frequency and duty cycle of an external signal.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @{
*/
/** @addtogroup TIM_PWM_Input
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Timer handler declaration */
TIM_HandleTypeDef TimHandle;
/* Timer Input Capture Configuration Structure declaration */
TIM_IC_InitTypeDef sConfig;
/* Slave configuration structure */
TIM_SlaveConfigTypeDef sSlaveConfig;
/* Captured Value */
__IO uint32_t uwIC2Value = 0;
/* Duty Cycle Value */
__IO uint32_t uwDutyCycle = 0;
/* Frequency Value */
__IO uint32_t uwFrequency = 0;
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch, instruction and Data caches
- Configure the Systick to generate an interrupt each 1 msec
- Set NVIC Group Priority to 4
- Global MSP (MCU Support Package) initialization
*/
HAL_Init();
/* Configure the system clock to 100 MHz */
SystemClock_Config();
/* Configure LED2 */
BSP_LED_Init(LED2);
/*##-1- Configure the TIM peripheral #######################################*/
/* Set TIMx instance */
TimHandle.Instance = TIMx;
/* Initialize TIMx peripheral as follows:
+ Period = 0xFFFF
+ Prescaler = 0
+ ClockDivision = 0
+ Counter direction = Up
*/
TimHandle.Init.Period = 0xFFFF;
TimHandle.Init.Prescaler = 0;
TimHandle.Init.ClockDivision = 0;
TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if(HAL_TIM_IC_Init(&TimHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/*##-2- Configure the Input Capture channels ###############################*/
/* Common configuration */
sConfig.ICPrescaler = TIM_ICPSC_DIV1;
sConfig.ICFilter = 0;
/* Configure the Input Capture of channel 1 */
sConfig.ICPolarity = TIM_ICPOLARITY_FALLING;
sConfig.ICSelection = TIM_ICSELECTION_INDIRECTTI;
if(HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Configure the Input Capture of channel 2 */
sConfig.ICPolarity = TIM_ICPOLARITY_RISING;
sConfig.ICSelection = TIM_ICSELECTION_DIRECTTI;
if(HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*##-3- Configure the slave mode ###########################################*/
/* Select the slave Mode: Reset Mode */
sSlaveConfig.SlaveMode = TIM_SLAVEMODE_RESET;
sSlaveConfig.InputTrigger = TIM_TS_TI2FP2;
if(HAL_TIM_SlaveConfigSynchronization(&TimHandle, &sSlaveConfig) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*##-4- Start the Input Capture in interrupt mode ##########################*/
if(HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_2) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
/*##-5- Start the Input Capture in interrupt mode ##########################*/
if(HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_1) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
/* Infinite loop */
while (1)
{
}
}
/**
* @brief Input Capture callback in non blocking mode
* @param htim: TIM IC handle
* @retval None
*/
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
{
/* Get the Input Capture value */
uwIC2Value = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
if (uwIC2Value != 0)
{
/* Duty cycle computation */
uwDutyCycle = ((HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1)) * 100) / uwIC2Value;
/* uwFrequency computation
TIM4 counter clock = (RCC_Clocks.HCLK_Frequency) */
uwFrequency = (HAL_RCC_GetHCLKFreq()) / uwIC2Value;
}
else
{
uwDutyCycle = 0;
uwFrequency = 0;
}
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED2 (GREEN) stays on */
BSP_LED_On(LED2);
while(1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSI)
* SYSCLK(Hz) = 100000000
* HCLK(Hz) = 100000000
* AHB Prescaler = 1
* APB1 Prescaler = 2
* APB2 Prescaler = 1
* HSI Frequency(Hz) = 16000000
* PLL_M = 16
* PLL_N = 400
* PLL_P = 4
* PLL_Q = 7
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 3
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSI Oscillator and activate PLL with HSI as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = 0x10;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 16;
RCC_OscInitStruct.PLL.PLLN = 400;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 7;
if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK)
{
Error_Handler();
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/