STM32CubeF4/Projects/STM32F429ZI-Nucleo/Examples_MIX/DMA2D/DMA2D_MemToMemWithLCD/Src/main.c

333 lines
10 KiB
C

/**
******************************************************************************
* @file Examples_MIX/DMA2D/DMA2D_MemToMemWithLCD/Src/main.c
* @author MCD Application Team
* @brief This example provides a description of how to configure
* DMA2D peripheral in Memory to Memory transfer mode
* and display the result on LCD, in resorting to DMA2D LL APIs.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "RGB565_128x160.h"
/** @addtogroup STM32F4xx_MIX_Examples
* @{
*/
/** @addtogroup DMA2D_MemToMemWithLCD
* @{
*/
/* Private typedef -----------------------------------------------------------*/
typedef enum
{
SHIELD_NOT_DETECTED = 0,
SHIELD_DETECTED
}ShieldStatus;
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* DMA2D output address in SRAM : this is the buffer displayed on LCD screen */
uint16_t aBufferResult[LAYER_SIZE_X * LAYER_SIZE_Y];
/* Blended image Ready flag */
__IO uint32_t blended_image_ready = 0;
/* Private function prototypes -----------------------------------------------*/
static ShieldStatus TFT_ShieldDetect(void);
static void LCD_ImageDisplay(void);
static void DMA2D_Config(void);
static void SystemClock_Config(void);
void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
blended_image_ready = 0;
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure the system clock */
SystemClock_Config();
/* Configure LED1, LED2 and LED3 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED2);
BSP_LED_Init(LED3);
/* Check the availability of adafruit 1.8" TFT shield on top of STM32NUCLEO
board. This is done by reading the state of IO PF.03 pin (mapped to
JoyStick available on adafruit 1.8" TFT shield). If the state of PF.03
is high then the adafruit 1.8" TFT shield is available. */
if(TFT_ShieldDetect() != SHIELD_DETECTED)
{
Error_Handler();
}
/* Initialize the LCD */
BSP_LCD_Init();
/*##-2- DMA2D configuration ################################################*/
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_DMA2D);
NVIC_SetPriority(DMA2D_IRQn, 0);
NVIC_EnableIRQ(DMA2D_IRQn);
DMA2D_Config();
/*##-3- Start DMA2D transfer ###############################################*/
LL_DMA2D_FGND_SetMemAddr(DMA2D, (uint32_t)&RGB565_128x160); /* Source buffer in format RGB565 and size 128x160 */
LL_DMA2D_SetOutputMemAddr(DMA2D, (uint32_t)aBufferResult); /* Output Buffer */
LL_DMA2D_ConfigSize(DMA2D, LAYER_SIZE_Y * LAYER_SIZE_X, 1); /* Force 1 pixel per line and width in pixels x height in pixels */
/* as number of lines to align DMA2D transfer to LCD configuration */
/* Enable the transfer complete, transfer error and configuration error interrupts */
LL_DMA2D_EnableIT_TC(DMA2D);
LL_DMA2D_EnableIT_TE(DMA2D);
LL_DMA2D_EnableIT_CE(DMA2D);
/* Enable the Peripheral */
LL_DMA2D_Start(DMA2D);
/*##-4- Wait until DMA2D transfer is over ################################################*/
while(blended_image_ready == 0) {;}
/*##-5- Display the image ################################################*/
LCD_ImageDisplay();
while (1)
{
;
}
}
/**
* @brief DMA2D configuration.
* @note This function Configure the DMA2D peripheral :
* 1) Configure the transfer mode : memory to memory
* 2) Configure the output color mode as RGB565
* 3) Configure the transfer from FLASH to SRAM
* 4) Configure the data size : 128x160 (pixels)
* @retval
* None
*/
static void DMA2D_Config(void)
{
/* Configure the DMA2D Color Mode */
LL_DMA2D_SetOutputColorMode(DMA2D, LL_DMA2D_OUTPUT_MODE_RGB565);
/* Foreground Configuration: */
/* Set Alpha value to full opaque */
LL_DMA2D_FGND_SetAlpha(DMA2D, 0xFF);
/* Foreground layer format is RGB565 (16 bpp) */
LL_DMA2D_FGND_SetColorMode(DMA2D, LL_DMA2D_INPUT_MODE_RGB565);
}
/**
* @brief On Error Handler on condition TRUE.
* @param condition : Can be TRUE or FALSE
* @retval None
*/
void OnError_Handler(uint32_t condition)
{
if(condition)
{
BSP_LED_On(LED2);
while(1) { ; } /* Blocking on error */
}
}
/**
* @brief Check the availability of adafruit 1.8" TFT shield on top of STM32NUCLEO
* board. This is done by reading the state of IO PF.03 pin (mapped to
* JoyStick available on adafruit 1.8" TFT shield). If the state of PF.03
* is high then the adafruit 1.8" TFT shield is available.
* @param None
* @retval SHIELD_DETECTED: 1.8" TFT shield is available
* SHIELD_NOT_DETECTED: 1.8" TFT shield is not available
*/
static ShieldStatus TFT_ShieldDetect(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* Enable GPIO clock */
NUCLEO_ADCx_GPIO_CLK_ENABLE();
GPIO_InitStruct.Pin = NUCLEO_ADCx_GPIO_PIN ;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(NUCLEO_ADCx_GPIO_PORT , &GPIO_InitStruct);
if(HAL_GPIO_ReadPin(NUCLEO_ADCx_GPIO_PORT, NUCLEO_ADCx_GPIO_PIN) != 0)
{
return SHIELD_DETECTED;
}
else
{
return SHIELD_NOT_DETECTED;
}
}
/**
* @brief LCD display image on Adafruit LCD.
* @param None
* @retval None
*/
static void LCD_ImageDisplay(void)
{
int16_t line = 0;
uint16_t pixel = 0;
uint16_t *img_ptr = NULL;
/* Set pointer to DMA2D output buffer */
img_ptr = aBufferResult;
line = LAYER_SIZE_Y - 1;
while (line >= 0)
{
/* Write pixels */
BSP_LCD_DrawPixel(pixel, line, (uint16_t)*img_ptr);
img_ptr++;
pixel++;
if (pixel == LAYER_SIZE_X)
{
/* Move to next line */
pixel = 0;
line--;
}
}
}
/**
* @brief This function handles the test program fail.
* @param None
* @retval None
*/
void Error_Handler(void)
{
BSP_LED_On(LED3);
while(1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 180000000
* HCLK(Hz) = 180000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 8000000
* PLL_M = 8
* PLL_N = 360
* PLL_P = 2
* PLL_Q = 7
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 5
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 360;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
while(1) { ; }
}
if(HAL_PWREx_EnableOverDrive() != HAL_OK)
{
while(1) { ; }
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
while(1) { ; }
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/