311 lines
9.5 KiB
C
311 lines
9.5 KiB
C
/**
|
|
******************************************************************************
|
|
* @file TIM/TIM_PWMInput/Src/main.c
|
|
* @author MCD Application Team
|
|
* @brief This example shows how to use the TIM peripheral to measure the
|
|
* frequency and duty cycle of an external signal.
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* Copyright (c) 2017 STMicroelectronics.
|
|
* All rights reserved.
|
|
*
|
|
* This software is licensed under terms that can be found in the LICENSE file
|
|
* in the root directory of this software component.
|
|
* If no LICENSE file comes with this software, it is provided AS-IS.
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "main.h"
|
|
|
|
/** @addtogroup STM32F4xx_HAL_Examples
|
|
* @{
|
|
*/
|
|
|
|
/** @addtogroup TIM_PWMInput
|
|
* @{
|
|
*/
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/* Timer handler declaration */
|
|
TIM_HandleTypeDef TimHandle;
|
|
|
|
/* Timer Input Capture Configuration Structure declaration */
|
|
TIM_IC_InitTypeDef sConfig;
|
|
|
|
/* Slave configuration structure */
|
|
TIM_SlaveConfigTypeDef sSlaveConfig;
|
|
|
|
/* Captured Value */
|
|
__IO uint32_t uwIC2Value = 0;
|
|
/* Duty Cycle Value */
|
|
__IO uint32_t uwDutyCycle = 0;
|
|
/* Frequency Value */
|
|
__IO uint32_t uwFrequency = 0;
|
|
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
static void SystemClock_Config(void);
|
|
static void Error_Handler(void);
|
|
|
|
/* Private functions ---------------------------------------------------------*/
|
|
|
|
/**
|
|
* @brief Main program.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
int main(void)
|
|
{
|
|
/* STM32F4xx HAL library initialization:
|
|
- Configure the Flash prefetch
|
|
- Systick timer is configured by default as source of time base, but user
|
|
can eventually implement his proper time base source (a general purpose
|
|
timer for example or other time source), keeping in mind that Time base
|
|
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
|
|
handled in milliseconds basis.
|
|
- Set NVIC Group Priority to 4
|
|
- Low Level Initialization
|
|
*/
|
|
HAL_Init();
|
|
|
|
/* Configure the system clock to 100 MHz */
|
|
SystemClock_Config();
|
|
|
|
/* Configure LED3 */
|
|
BSP_LED_Init(LED3);
|
|
|
|
/*##-1- Configure the TIM peripheral #######################################*/
|
|
/* ---------------------------------------------------------------------------
|
|
TIM3 configuration: PWM Input mode
|
|
|
|
In this example TIM3 input clock (TIM3CLK) is set to APB1 clock x 2,
|
|
since APB1 prescaler is 2.
|
|
TIM3CLK = APB1CLK*2
|
|
APB1CLK = HCLK/2
|
|
=> TIM3CLK = HCLK = SystemCoreClock
|
|
|
|
External Signal Frequency = TIM3 counter clock / TIM3_CCR2 in Hz.
|
|
|
|
External Signal DutyCycle = (TIM3_CCR1*100)/(TIM3_CCR2) in %.
|
|
|
|
--------------------------------------------------------------------------- */
|
|
|
|
/* Set TIMx instance */
|
|
TimHandle.Instance = TIMx;
|
|
|
|
/* Initialize TIMx peripheral as follows:
|
|
+ Period = 0xFFFF
|
|
+ Prescaler = 0
|
|
+ ClockDivision = 0
|
|
+ Counter direction = Up
|
|
*/
|
|
TimHandle.Init.Period = 0xFFFF;
|
|
TimHandle.Init.Prescaler = 0;
|
|
TimHandle.Init.ClockDivision = 0;
|
|
TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
|
|
TimHandle.Init.RepetitionCounter = 0;
|
|
TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
|
|
if (HAL_TIM_IC_Init(&TimHandle) != HAL_OK)
|
|
{
|
|
/* Initialization Error */
|
|
Error_Handler();
|
|
}
|
|
|
|
/*##-2- Configure the Input Capture channels ###############################*/
|
|
/* Common configuration */
|
|
sConfig.ICPrescaler = TIM_ICPSC_DIV1;
|
|
sConfig.ICFilter = 0;
|
|
|
|
/* Configure the Input Capture of channel 1 */
|
|
sConfig.ICPolarity = TIM_ICPOLARITY_FALLING;
|
|
sConfig.ICSelection = TIM_ICSELECTION_INDIRECTTI;
|
|
if (HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1) != HAL_OK)
|
|
{
|
|
/* Configuration Error */
|
|
Error_Handler();
|
|
}
|
|
|
|
/* Configure the Input Capture of channel 2 */
|
|
sConfig.ICPolarity = TIM_ICPOLARITY_RISING;
|
|
sConfig.ICSelection = TIM_ICSELECTION_DIRECTTI;
|
|
if (HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2) != HAL_OK)
|
|
{
|
|
/* Configuration Error */
|
|
Error_Handler();
|
|
}
|
|
/*##-3- Configure the slave mode ###########################################*/
|
|
/* Select the slave Mode: Reset Mode */
|
|
sSlaveConfig.SlaveMode = TIM_SLAVEMODE_RESET;
|
|
sSlaveConfig.InputTrigger = TIM_TS_TI2FP2;
|
|
sSlaveConfig.TriggerPolarity = TIM_TRIGGERPOLARITY_NONINVERTED;
|
|
sSlaveConfig.TriggerPrescaler = TIM_TRIGGERPRESCALER_DIV1;
|
|
sSlaveConfig.TriggerFilter = 0;
|
|
if (HAL_TIM_SlaveConfigSynchronization(&TimHandle, &sSlaveConfig) != HAL_OK)
|
|
{
|
|
/* Configuration Error */
|
|
Error_Handler();
|
|
}
|
|
|
|
/*##-4- Start the Input Capture in interrupt mode ##########################*/
|
|
if (HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_2) != HAL_OK)
|
|
{
|
|
/* Starting Error */
|
|
Error_Handler();
|
|
}
|
|
|
|
/*##-5- Start the Input Capture in interrupt mode ##########################*/
|
|
if (HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_1) != HAL_OK)
|
|
{
|
|
/* Starting Error */
|
|
Error_Handler();
|
|
}
|
|
|
|
while (1)
|
|
{
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Input Capture callback in non blocking mode
|
|
* @param htim : TIM IC handle
|
|
* @retval None
|
|
*/
|
|
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
|
|
{
|
|
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
|
|
{
|
|
/* Get the Input Capture value */
|
|
uwIC2Value = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
|
|
|
|
if (uwIC2Value != 0)
|
|
{
|
|
/* Duty cycle computation */
|
|
uwDutyCycle = ((HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1)) * 100) / uwIC2Value;
|
|
|
|
/* uwFrequency computation
|
|
TIM3 counter clock = (RCC_Clocks.HCLK_Frequency) */
|
|
uwFrequency = (HAL_RCC_GetHCLKFreq()) / uwIC2Value;
|
|
}
|
|
else
|
|
{
|
|
uwDutyCycle = 0;
|
|
uwFrequency = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief This function is executed in case of error occurrence.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
static void Error_Handler(void)
|
|
{
|
|
/* Turn LED3 on */
|
|
BSP_LED_On(LED3);
|
|
while (1)
|
|
{
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief System Clock Configuration
|
|
* The system Clock is configured as follow :
|
|
* System Clock source = PLL (HSE)
|
|
* SYSCLK(Hz) = 100000000
|
|
* HCLK(Hz) = 100000000
|
|
* AHB Prescaler = 1
|
|
* APB1 Prescaler = 2
|
|
* APB2 Prescaler = 1
|
|
* HSE Frequency(Hz) = 8000000
|
|
* PLL_M = 8
|
|
* PLL_N = 200
|
|
* PLL_P = 2
|
|
* PLL_Q = 7
|
|
* PLL_R = 2
|
|
* VDD(V) = 3.3
|
|
* Main regulator output voltage = Scale1 mode
|
|
* Flash Latency(WS) = 3
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
static void SystemClock_Config(void)
|
|
{
|
|
RCC_ClkInitTypeDef RCC_ClkInitStruct;
|
|
RCC_OscInitTypeDef RCC_OscInitStruct;
|
|
HAL_StatusTypeDef ret = HAL_OK;
|
|
|
|
/* Enable Power Control clock */
|
|
__HAL_RCC_PWR_CLK_ENABLE();
|
|
|
|
/* The voltage scaling allows optimizing the power consumption when the device is
|
|
clocked below the maximum system frequency, to update the voltage scaling value
|
|
regarding system frequency refer to product datasheet. */
|
|
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
|
|
|
|
/* Enable HSE Oscillator and activate PLL with HSE as source */
|
|
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
|
|
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
|
|
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
|
|
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
|
|
RCC_OscInitStruct.PLL.PLLM = 8;
|
|
RCC_OscInitStruct.PLL.PLLN = 200;
|
|
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
|
|
RCC_OscInitStruct.PLL.PLLQ = 7;
|
|
RCC_OscInitStruct.PLL.PLLR = 2;
|
|
ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);
|
|
|
|
if(ret != HAL_OK)
|
|
{
|
|
while(1) { ; }
|
|
}
|
|
|
|
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
|
|
clocks dividers */
|
|
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
|
|
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
|
|
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
|
|
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
|
|
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
|
|
ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3);
|
|
if(ret != HAL_OK)
|
|
{
|
|
while(1) { ; }
|
|
}
|
|
}
|
|
|
|
#ifdef USE_FULL_ASSERT
|
|
|
|
/**
|
|
* @brief Reports the name of the source file and the source line number
|
|
* where the assert_param error has occurred.
|
|
* @param file: pointer to the source file name
|
|
* @param line: assert_param error line source number
|
|
* @retval None
|
|
*/
|
|
void assert_failed(uint8_t *file, uint32_t line)
|
|
{
|
|
/* User can add his own implementation to report the file name and line number,
|
|
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
|
|
|
|
/* Infinite loop */
|
|
while (1)
|
|
{
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|