278 lines
9.5 KiB
C
278 lines
9.5 KiB
C
/**
|
|
******************************************************************************
|
|
* @file TIM/TIM_DMA/Src/main.c
|
|
* @author MCD Application Team
|
|
* @brief This sample code shows how to use DMA with TIM3 Update request to
|
|
* transfer Data from memory to TIM3 Capture Compare Register 3 (CCR3).
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* Copyright (c) 2017 STMicroelectronics.
|
|
* All rights reserved.
|
|
*
|
|
* This software is licensed under terms that can be found in the LICENSE file
|
|
* in the root directory of this software component.
|
|
* If no LICENSE file comes with this software, it is provided AS-IS.
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "main.h"
|
|
|
|
/** @addtogroup STM32F4xx_HAL_Examples
|
|
* @{
|
|
*/
|
|
|
|
/** @addtogroup TIM_DMA
|
|
* @{
|
|
*/
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/* Timer handler declaration */
|
|
TIM_HandleTypeDef TimHandle;
|
|
|
|
/* Timer Output Compare Configuration Structure declaration */
|
|
TIM_OC_InitTypeDef sConfig;
|
|
|
|
/* Capture Compare buffer */
|
|
uint32_t aCCValue_Buffer[3] = {0, 0, 0};
|
|
|
|
/* Timer Period*/
|
|
uint32_t uwTimerPeriod = 0;
|
|
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
static void SystemClock_Config(void);
|
|
static void Error_Handler(void);
|
|
|
|
/* Private functions ---------------------------------------------------------*/
|
|
|
|
/**
|
|
* @brief Main program.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
int main(void)
|
|
{
|
|
/* This sample code shows how to use DMA with TIM3 Update request to transfer
|
|
Data from memory to TIM3 Capture Compare Register 3 (CCR3), through the
|
|
STM32F4xx HAL API. To proceed, 3 steps are required */
|
|
|
|
/* STM32F4xx HAL library initialization:
|
|
- Configure the Flash prefetch
|
|
- Systick timer is configured by default as source of time base, but user
|
|
can eventually implement his proper time base source (a general purpose
|
|
timer for example or other time source), keeping in mind that Time base
|
|
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
|
|
handled in milliseconds basis.
|
|
- Set NVIC Group Priority to 4
|
|
- Low Level Initialization
|
|
*/
|
|
HAL_Init();
|
|
|
|
/* Configure the system clock to 100 MHz */
|
|
SystemClock_Config();
|
|
|
|
/* Configure LED3 */
|
|
BSP_LED_Init(LED3);
|
|
|
|
/* Compute the value of ARR register to generate signal frequency at 17.57 Khz */
|
|
uwTimerPeriod = (uint32_t)((SystemCoreClock / 17570) - 1);
|
|
/* Compute CCR1 value to generate a duty cycle at 75% */
|
|
aCCValue_Buffer[0] = (uint32_t)(((uint32_t) 75 * (uwTimerPeriod - 1)) / 100);
|
|
/* Compute CCR2 value to generate a duty cycle at 50% */
|
|
aCCValue_Buffer[1] = (uint32_t)(((uint32_t) 50 * (uwTimerPeriod - 1)) / 100);
|
|
/* Compute CCR3 value to generate a duty cycle at 25% */
|
|
aCCValue_Buffer[2] = (uint32_t)(((uint32_t) 25 * (uwTimerPeriod - 1)) / 100);
|
|
|
|
/*##-1- Configure the TIM peripheral #######################################*/
|
|
/* ---------------------------------------------------------------------------
|
|
* TIM3 input clock is set to APB1 clock (PCLK1),
|
|
* if (APB1 prescaler = 1) x1 else x2
|
|
* prescaler is 2.
|
|
* TIM1CLK = (HCLK/2) x2 = HCLK
|
|
|
|
TIM3CLK = SystemCoreClock, Prescaler = 0, TIM3 counter clock = SystemCoreClock
|
|
SystemCoreClock is set to 100 MHz for STM32F4xx devices.
|
|
|
|
The objective is to configure TIM3 channel 3 to generate a PWM
|
|
signal with a frequency equal to 17.57 KHz:
|
|
- TIM3_Period = (SystemCoreClock / 17570) - 1
|
|
and a variable duty cycle that is changed by the DMA after a specific number of
|
|
Update DMA request.
|
|
|
|
The number of this repetitive requests is defined by the TIM3 Repetition counter,
|
|
each 4 Update Requests, the TIM3 Channel 3 Duty Cycle changes to the next new
|
|
value defined by the aCCValue_Buffer.
|
|
|
|
Note:
|
|
SystemCoreClock variable holds HCLK frequency and is defined in system_stm32f4xx.c file.
|
|
Each time the core clock (HCLK) changes, user had to update SystemCoreClock
|
|
variable value. Otherwise, any configuration based on this variable will be incorrect.
|
|
This variable is updated in three ways:
|
|
1) by calling CMSIS function SystemCoreClockUpdate()
|
|
2) by calling HAL API function HAL_RCC_GetSysClockFreq()
|
|
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
|
|
-----------------------------------------------------------------------------*/
|
|
/* Initialize TIM3 peripheral as follows:
|
|
+ Period = TimerPeriod (To have an output frequency equal to 17.570 KHz)
|
|
+ Repetition Counter = 3
|
|
+ Prescaler = 0
|
|
+ ClockDivision = 0
|
|
+ Counter direction = Up
|
|
*/
|
|
TimHandle.Instance = TIMx;
|
|
|
|
TimHandle.Init.Period = uwTimerPeriod;
|
|
TimHandle.Init.RepetitionCounter = 3;
|
|
TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
|
|
TimHandle.Init.Prescaler = 0;
|
|
TimHandle.Init.ClockDivision = 0;
|
|
TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
|
|
if (HAL_TIM_PWM_Init(&TimHandle) != HAL_OK)
|
|
{
|
|
/* Initialization Error */
|
|
Error_Handler();
|
|
}
|
|
|
|
/*##-2- Configure the PWM channel 3 ########################################*/
|
|
sConfig.OCMode = TIM_OCMODE_PWM1;
|
|
sConfig.OCPolarity = TIM_OCPOLARITY_HIGH;
|
|
sConfig.Pulse = aCCValue_Buffer[0];
|
|
sConfig.OCNPolarity = TIM_OCNPOLARITY_HIGH;
|
|
sConfig.OCFastMode = TIM_OCFAST_DISABLE;
|
|
sConfig.OCIdleState = TIM_OCIDLESTATE_RESET;
|
|
sConfig.OCNIdleState = TIM_OCNIDLESTATE_RESET;
|
|
if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_3) != HAL_OK)
|
|
{
|
|
/* Configuration Error */
|
|
Error_Handler();
|
|
}
|
|
|
|
/*##-3- Start PWM signal generation in DMA mode ############################*/
|
|
if (HAL_TIM_PWM_Start_DMA(&TimHandle, TIM_CHANNEL_3, aCCValue_Buffer, 3) != HAL_OK)
|
|
{
|
|
/* Starting Error */
|
|
Error_Handler();
|
|
}
|
|
|
|
while (1)
|
|
{
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief This function is executed in case of error occurrence.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
static void Error_Handler(void)
|
|
{
|
|
/* Turn LED3 on */
|
|
BSP_LED_On(LED3);
|
|
while (1)
|
|
{
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief System Clock Configuration
|
|
* The system Clock is configured as follow :
|
|
* System Clock source = PLL (HSE)
|
|
* SYSCLK(Hz) = 100000000
|
|
* HCLK(Hz) = 100000000
|
|
* AHB Prescaler = 1
|
|
* APB1 Prescaler = 2
|
|
* APB2 Prescaler = 1
|
|
* HSE Frequency(Hz) = 8000000
|
|
* PLL_M = 8
|
|
* PLL_N = 200
|
|
* PLL_P = 2
|
|
* PLL_Q = 7
|
|
* PLL_R = 2
|
|
* VDD(V) = 3.3
|
|
* Main regulator output voltage = Scale1 mode
|
|
* Flash Latency(WS) = 3
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
static void SystemClock_Config(void)
|
|
{
|
|
RCC_ClkInitTypeDef RCC_ClkInitStruct;
|
|
RCC_OscInitTypeDef RCC_OscInitStruct;
|
|
HAL_StatusTypeDef ret = HAL_OK;
|
|
|
|
/* Enable Power Control clock */
|
|
__HAL_RCC_PWR_CLK_ENABLE();
|
|
|
|
/* The voltage scaling allows optimizing the power consumption when the device is
|
|
clocked below the maximum system frequency, to update the voltage scaling value
|
|
regarding system frequency refer to product datasheet. */
|
|
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
|
|
|
|
/* Enable HSE Oscillator and activate PLL with HSE as source */
|
|
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
|
|
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
|
|
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
|
|
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
|
|
RCC_OscInitStruct.PLL.PLLM = 8;
|
|
RCC_OscInitStruct.PLL.PLLN = 200;
|
|
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
|
|
RCC_OscInitStruct.PLL.PLLQ = 7;
|
|
RCC_OscInitStruct.PLL.PLLR = 2;
|
|
ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);
|
|
|
|
if(ret != HAL_OK)
|
|
{
|
|
while(1) { ; }
|
|
}
|
|
|
|
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
|
|
clocks dividers */
|
|
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
|
|
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
|
|
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
|
|
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
|
|
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
|
|
ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3);
|
|
if(ret != HAL_OK)
|
|
{
|
|
while(1) { ; }
|
|
}
|
|
}
|
|
|
|
#ifdef USE_FULL_ASSERT
|
|
|
|
/**
|
|
* @brief Reports the name of the source file and the source line number
|
|
* where the assert_param error has occurred.
|
|
* @param file: pointer to the source file name
|
|
* @param line: assert_param error line source number
|
|
* @retval None
|
|
*/
|
|
void assert_failed(uint8_t *file, uint32_t line)
|
|
{
|
|
/* User can add his own implementation to report the file name and line number,
|
|
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
|
|
|
|
/* Infinite loop */
|
|
while (1)
|
|
{
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|