STM32CubeF4/Projects/STM32469I-Discovery/Applications/EEPROM/EEPROM_Emulation/Src/main.c

320 lines
8.5 KiB
C

/**
******************************************************************************
* @file EEPROM/EEPROM_Emulation/src/main.c
* @author MCD Application Team
* @brief Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup EEPROM_Emulation
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Virtual address defined by the user: 0xFFFF value is prohibited */
uint16_t VirtAddVarTab[NB_OF_VAR] = {0x5555, 0x6666, 0x7777};
uint16_t VarDataTab[NB_OF_VAR] = {0, 0, 0};
uint16_t VarValue,VarDataTmp = 0;
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* Configure the system clock to 180 MHz */
SystemClock_Config();
/* Unlock the Flash Program Erase controller */
HAL_FLASH_Unlock();
/* Configure LED1 */
BSP_LED_Init(LED1);
/* EEPROM Init */
if( EE_Init() != EE_OK)
{
Error_Handler();
}
/* --- Store successively many values of the three variables in the EEPROM ---*/
/* Store 0x1000 values of Variable1 in EEPROM */
for (VarValue = 1; VarValue <= 0x1000; VarValue++)
{
/* Sequence 1 */
if((EE_WriteVariable(VirtAddVarTab[0], VarValue)) != HAL_OK)
{
Error_Handler();
}
if((EE_ReadVariable(VirtAddVarTab[0], &VarDataTab[0])) != HAL_OK)
{
Error_Handler();
}
if (VarValue != VarDataTab[0])
{
Error_Handler();
}
/* Sequence 2 */
if(EE_WriteVariable(VirtAddVarTab[1], ~VarValue) != HAL_OK)
{
Error_Handler();
}
if(EE_ReadVariable(VirtAddVarTab[1], &VarDataTab[1]) != HAL_OK)
{
Error_Handler();
}
if(((uint16_t)~VarValue) != VarDataTab[1])
{
Error_Handler();
}
/* Sequence 3 */
if(EE_WriteVariable(VirtAddVarTab[2], VarValue << 1) != HAL_OK)
{
Error_Handler();
}
if(EE_ReadVariable(VirtAddVarTab[2], &VarDataTab[2]) != HAL_OK)
{
Error_Handler();
}
if ((VarValue << 1) != VarDataTab[2])
{
Error_Handler();
}
}
/* Store 0x2000 values of Variable2 in EEPROM */
for (VarValue = 1; VarValue <= 0x2000; VarValue++)
{
if(EE_WriteVariable(VirtAddVarTab[1], VarValue) != HAL_OK)
{
Error_Handler();
}
if(EE_ReadVariable(VirtAddVarTab[1], &VarDataTab[1]) != HAL_OK)
{
Error_Handler();
}
if(VarValue != VarDataTab[1])
{
Error_Handler();
}
}
/* read the last stored variables data*/
if(EE_ReadVariable(VirtAddVarTab[0], &VarDataTmp) != HAL_OK)
{
Error_Handler();
}
if (VarDataTmp != VarDataTab[0])
{
Error_Handler();
}
if(EE_ReadVariable(VirtAddVarTab[1], &VarDataTmp) != HAL_OK)
{
Error_Handler();
}
if (VarDataTmp != VarDataTab[1])
{
Error_Handler();
}
if(EE_ReadVariable(VirtAddVarTab[2], &VarDataTmp) != HAL_OK)
{
Error_Handler();
}
if (VarDataTmp != VarDataTab[2])
{
Error_Handler();
}
/* Store 0x3000 values of Variable3 in EEPROM */
for (VarValue = 1; VarValue <= 0x3000; VarValue++)
{
if(EE_WriteVariable(VirtAddVarTab[2], VarValue) != HAL_OK)
{
Error_Handler();
}
if(EE_ReadVariable(VirtAddVarTab[2], &VarDataTab[2]) != HAL_OK)
{
Error_Handler();
}
if(VarValue != VarDataTab[2])
{
Error_Handler();
}
}
/* read the last stored variables data*/
if(EE_ReadVariable(VirtAddVarTab[0], &VarDataTmp) != HAL_OK)
{
Error_Handler();
}
if (VarDataTmp != VarDataTab[0])
{
Error_Handler();
}
if(EE_ReadVariable(VirtAddVarTab[1], &VarDataTmp) != HAL_OK)
{
Error_Handler();
}
if (VarDataTmp != VarDataTab[1])
{
Error_Handler();
}
if(EE_ReadVariable(VirtAddVarTab[2], &VarDataTmp) != HAL_OK)
{
Error_Handler();
}
if (VarDataTmp != VarDataTab[2])
{
Error_Handler();
}
while (1)
{
/* Turn LED1 On */
BSP_LED_On(LED1);
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 180000000
* HCLK(Hz) = 180000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 8000000
* PLL_M = 8
* PLL_N = 360
* PLL_P = 2
* PLL_Q = 7
* PLL_R = 6
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 5
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
HAL_StatusTypeDef ret = HAL_OK;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
#if defined(USE_STM32469I_DISCO_REVA)
RCC_OscInitStruct.PLL.PLLM = 25;
#else
RCC_OscInitStruct.PLL.PLLM = 8;
#endif /* USE_STM32469I_DISCO_REVA */
RCC_OscInitStruct.PLL.PLLN = 360;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
RCC_OscInitStruct.PLL.PLLR = 6;
ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Activate the OverDrive to reach the 180 MHz Frequency */
ret = HAL_PWREx_EnableOverDrive();
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
if(ret != HAL_OK)
{
while(1) { ; }
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
while(1)
{
/* Toggle LED1 fast */
BSP_LED_Toggle(LED1);
HAL_Delay(40);
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif