/** ****************************************************************************** * @file ADC/ADC_RegularConversion_DMA/Src/main.c * @author MCD Application Team * @brief This example describes how to use the DMA to transfer * continuously converted data. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_HAL_Examples * @{ */ /** @addtogroup ADC_RegularConversion_DMA * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* ADC handler declaration */ ADC_HandleTypeDef AdcHandle; /* Variable used to get converted value */ __IO uint16_t uhADCxConvertedValue = 0; /* Private function prototypes -----------------------------------------------*/ static void SystemClock_Config(void); static void Error_Handler(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program. * @param None * @retval None */ int main(void) { ADC_ChannelConfTypeDef sConfig; /* STM32F4xx HAL library initialization: - Configure the Flash prefetch - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization */ HAL_Init(); /* Configure LED1 and LED2 */ BSP_LED_Init(LED1); BSP_LED_Init(LED2); /* Configure the system clock to 180 MHz */ SystemClock_Config(); /*##-1- Configure the ADC peripheral #######################################*/ AdcHandle.Instance = ADCx; AdcHandle.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2; AdcHandle.Init.Resolution = ADC_RESOLUTION12b; AdcHandle.Init.ScanConvMode = DISABLE; /* Sequencer disabled (ADC conversion on only 1 channel: channel set on rank 1) */ AdcHandle.Init.ContinuousConvMode = ENABLE; /* Continuous mode disabled to have only 1 conversion at each conversion trig */ AdcHandle.Init.DiscontinuousConvMode = DISABLE; /* Parameter discarded because sequencer is disabled */ AdcHandle.Init.NbrOfDiscConversion = 0; AdcHandle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; /* Conversion start triggered at each external event */ AdcHandle.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1; AdcHandle.Init.DataAlign = ADC_DATAALIGN_RIGHT; AdcHandle.Init.NbrOfConversion = 1; AdcHandle.Init.DMAContinuousRequests = ENABLE; AdcHandle.Init.EOCSelection = DISABLE; if (HAL_ADC_Init(&AdcHandle) != HAL_OK) { /* ADC initialization Error */ Error_Handler(); } /*##-2- Configure ADC regular channel ######################################*/ sConfig.Channel = ADC_CHANNEL_10; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&AdcHandle, &sConfig) != HAL_OK) { /* Channel Configuration Error */ Error_Handler(); } /*##-3- Start the conversion process #######################################*/ /* Note: Considering IT occurring after each number of ADC conversions */ /* (IT by DMA end of transfer), select sampling time and ADC clock */ /* with sufficient duration to not create an overhead situation in */ /* IRQHandler. */ if(HAL_ADC_Start_DMA(&AdcHandle, (uint32_t*)&uhADCxConvertedValue, 1) != HAL_OK) { /* Start Conversation Error */ Error_Handler(); } /* Infinite loop */ while (1) { } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 180000000 * HCLK(Hz) = 180000000 * AHB Prescaler = 1 * APB1 Prescaler = 4 * APB2 Prescaler = 2 * HSE Frequency(Hz) = 8000000 * PLL_M = 8 * PLL_N = 360 * PLL_P = 2 * PLL_Q = 7 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 5 * @param None * @retval None */ static void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Enable HSE Oscillator and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 360; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { /* Initialization Error */ Error_Handler(); } if(HAL_PWREx_EnableOverDrive() != HAL_OK) { /* Initialization Error */ Error_Handler(); } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { /* Initialization Error */ Error_Handler(); } } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None */ static void Error_Handler(void) { /* Turn LED2 on */ BSP_LED_On(LED2); while (1) { } } /** * @brief Conversion complete callback in non blocking mode * @param AdcHandle : AdcHandle handle * @note This example shows a simple way to report end of conversion, and * you can add your own implementation. * @retval None */ void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* AdcHandle) { /* Turn LED1 on: Transfer process is correct */ BSP_LED_On(LED1); } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */