STM32CubeF2/Projects/STM322xG_EVAL/Examples/RCC/RCC_ClockConfig/Src/main.c

324 lines
11 KiB
C

/**
******************************************************************************
* @file RCC/RCC_ClockConfig/Src/main.c
* @author MCD Application Team
* @brief This example describes how to use the RCC HAL API to configure the
* system clock (SYSCLK) and modify the clock settings on run time.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F2xx_HAL_Examples
* @{
*/
/** @addtogroup RCC_ClockConfig
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
static RCC_ClkInitTypeDef RCC_ClkInitStruct;
static RCC_OscInitTypeDef RCC_OscInitStruct;
/* Private function prototypes -----------------------------------------------*/
static void SystemClockHSI_Config(void);
static void SystemClockHSE_Config(void);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* STM32F2xx HAL library initialization:
- Configure the Flash prefetch, instruction and Data caches
- Configure the Systick to generate an interrupt each 1 msec
- Set NVIC Group Priority to 4
- Global MSP (MCU Support Package) initialization
*/
HAL_Init();
/* Configure LED1, LED2, LED3 and LED4 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED2);
BSP_LED_Init(LED3);
BSP_LED_Init(LED4);
/* Configure Key Button, will be used to trigger an interrupt each time it's pressed.
In the ISR the PLL source will be changed from HSE to HSI, and vice versa. */
BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_EXTI);
/* Enable HSE oscillator and configure the PLL to reach the max system frequency (120MHz)
when using HSE oscillator as PLL clock source. */
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 240;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 5;
if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers.
The SysTick 1 msec interrupt is required for the HAL process (Timeout management); by default
the configuration is done using the HAL_Init() API, and when the system clock configuration
is updated the SysTick configuration will be adjusted by the HAL_RCC_ClockConfig() API. */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* Output SYSCLK divided by 2 on MCO2 pin(PC9) */
HAL_RCC_MCOConfig(RCC_MCO2, RCC_MCO2SOURCE_SYSCLK, RCC_MCODIV_2);
/* Toggle some LEDs in an infinite loop */
while (1)
{
/* Toggle LED1 */
BSP_LED_Toggle(LED1);
HAL_Delay(100);
/* Toggle LED2 */
BSP_LED_Toggle(LED2);
HAL_Delay(100);
/* Toggle LED4 */
BSP_LED_Toggle(LED4);
HAL_Delay(100);
}
}
/**
* @brief EXTI line detection callbacks.
* @param GPIO_Pin: Specifies the pins connected EXTI line
* @retval None
*/
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
if(GPIO_Pin == KEY_BUTTON_PIN)
{
if(__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLCFGR_PLLSRC_HSI)
{
/* Set SYSCLK frequency to 120 MHz, coming from the PLL which is clocked by the HSE */
SystemClockHSE_Config();
}
else /* PLL source is HSE oscillator */
{
/* Set SYSCLK frequency to 120 MHz, coming from the PLL which is clocked by the HSI */
SystemClockHSI_Config();
}
}
}
/**
* @brief Switch the PLL source from HSI to HSE, and select the PLL as SYSCLK
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 120000000
* HCLK(Hz) = 120000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 25000000
* PLL_M = 25
* PLL_N = 240
* PLL_P = 2
* PLL_Q = 7
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 3
* @param None
* @retval None
*/
void SystemClockHSE_Config(void)
{
/* -1- Select HSI as system clock source to allow modification of the PLL configuration */
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* -2- Enable HSE Oscillator, select it as PLL source and finally activate the PLL */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 240;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* -3- Select the PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* -4- Optional: Disable HSI Oscillator (if the HSI is no more needed by the application)*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_OFF;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
}
/**
* @brief Switch the PLL source from HSI to HSE, and select the PLL as SYSCLK
* source.
* The system Clock is configured as follow :
* System Clock source = PLL (HSI)
* SYSCLK(Hz) = 120000000
* HCLK(Hz) = 120000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSI Frequency(Hz) = 16000000
* PLL_M = 16
* PLL_N = 240
* PLL_P = 2
* PLL_Q = 7
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 3
* @param None
* @retval None
*/
void SystemClockHSI_Config(void)
{
/* -1- Select HSE as system clock source to allow modification of the PLL configuration */
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* -2- Enable HSI Oscillator, select it as PLL source and finally activate the PLL */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 16;
RCC_OscInitStruct.PLL.PLLN = 240;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.HSICalibrationValue = 0x10;
if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* -3- Select the PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* -4- Optional: Disable HSE Oscillator (if the HSE is no more needed by the application) */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_OFF;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED3 on */
BSP_LED_On(LED3);
while(1)
{
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/